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Abstract. Approximate separable representations of Green’s functions for differential
operators is a basic and an important aspect in the analysis of differential equations and in
the development of efficient numerical algorithms for solving them. Being able to approx-
imate a Green’s function as a sum with few separable terms is equivalent to the existence
of low rank approximation of corresponding discretized system. This property can be
explored for matrix compression and efficient numerical algorithms. Green’s functions for
coercive elliptic differential operators in divergence form have been shown to be highly
separable and low rank approximation for their discretized systems has been utilized to
develop efficient numerical algorithms. The case of Helmholtz equation in the high fre-
quency limit is more challenging both mathematically and numerically. In this work, we
develop a new approach to study approximate separability for the Green’s function of
Helmholtz equation in the high frequency limit based on an explicit characterization of
the relation between two Green’s functions and a tight dimension estimate for the best
linear subspace approximating a set of almost orthogonal vectors. We derive both lower
bounds and upper bounds and show their sharpness for cases that are commonly used in
practice.

1. Introduction

Given a linear differential operator, denoted by L, the Green’s function, denoted by
G(x,y), is defined as the fundamental solution in a domain Ω ⊆ Rn to the partial differ-
ential equation

(1)

 LxG(x,y) = δ(x− y), x,y ∈ Ω ⊆ Rn

with boundary condition or condition at infinity,

where δ(x− y) is the Dirac delta function denoting an impulse source point at y. In par-
ticular, general solutions of a partial differential equation can be obtained by superposition
of fundamental solutions with source locations in Ω (and/or boundary of Ω).

Approximate separability of G(x,y) is defined as the following: given two sets X,Y ⊆
Ω ⊆ Rd (see Figure 1) and ε > 0, there is a smallest N ε such that there are fl(x), gl(y), l =
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1, 2, . . . , N ε

(2)

∥∥∥∥∥G(x,y)−
Nε∑
l=1

fl(x)gl(y)

∥∥∥∥∥
X×Y

≤ ε, x ∈ X,y ∈ Y,

where ‖ · ‖X×Y is the norm of some function space which G, fl, gl belong to. If X and Y
are compact and disjoint domains in Rd and G(x,y) is continuous in X×Y , which is often
the case of practical interest, there exists a polynomial approximation of G(x,y) in X ×Y
by Weierstrass approximation theorem which is separable. So there is a N ε < ∞ for any
ε > 0. The most interesting issue is how N ε depends on ε, which manifests the intrinsic
complexity of the PDE and its solution within ε-approximation. If one views G(x,y) as
a family of functions on X parametrized by y ∈ Y , this is equivalent to saying that the
Kolmogorov n-width [17] for the family of functions G(x,y) in the ‖ · ‖X normed function
space is ε when n = N ε. Kolmogorov n-width, which is used to characterize information
content in information theory, is the best approximation of a set S in a normed space W
by a n dimensional linear subspace Ln defined as

(3) dn(S,W ) := inf
Ln

sup
f∈S

inf
g∈Ln

‖f − g‖W ,

Of course the role of x and y can be reversed.

Ω

X Y

G(x,y)

Figure 1. Green’s function G(x,y) with dependence on x ∈ X and y ∈ Y .

We introduce the following relations to simplify notations in later derivations. x & y
means that there is a constant ∞ > c > 0 such that x ≥ cy, x . y means that there
is a constant ∞ > C > 0 such that x ≤ Cy, and x ∼ y means there are two constants
0 < c ≤ C < ∞ such that cy ≤ x ≤ Cy. For our results for Helmholtz equation (5), all
constants are independent of the wave number k as k →∞.

In this study, we assume X,Y ⊆ Ω are two compact manifolds embedded in Rd with di-
mensions dim(X) and dim(Y ) respectively, i.e., they may be compact domains inRd, dim(X) =
dim(Y ) = d = 1, 2, 3, or compact two dimensional surfaces embedded in R3 or one dimen-
sional compact curves embedded in Rd, d = 2, 3. Without loss of generality, we assume
dim(X) ≥ dim(Y ) = s.

One can get a sharper upper bound for N ε based simply on regularity of the Green’s
function. For example, suppose X,Y are two disjoint compact domains in Rd and G(x,y)

is Cm(X × Y ), one can show that N ε . ε−
d
m using the following argument. Lay down a
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uniform grid yj , j = 1, 2, . . . J ∼ ε−
d
m in Y with a grid size h ∼ ε

1
m . ∀y ∈ Y , G(x,y) can

be approximated by (m − 1)-th order interpolation/extrapolation of G(x,yj), which is a
linear combination of G(x,yj) and satisfies

(4) |G(·,y)−
∑

j:yj∈Bδ(y)

ajG(·,yj)| ≤ ‖Dm
y G(·, ·)‖L∞(X×Y )h

m ≤ ε,

where Bδ(y) is a ball centered at y with a radius δ ∼ h. If Y is a rectangular domain
and G(x,y), one can even use We call G(x,y) highly separable if N ε depends on ε weekly,
N ε ≤ O(| log ε|p), for some p > 0.

When a linear PDE, such as (1), is discretized and numerically solved, high separabil-
ity of its Green’s function implies existence of low rank approximation of subsets of the
discretized system, which provides a matrix compression and lies at the heart for many
efficient algorithms. Typically low rank approximation has been used in two ways. One
way is to utilize low rank approximation of the discretized Green’s function, which is the
kernel for boundary integral formulation, for fast matrix vector multiplication when solv-
ing boundary integral equations by iterative methods [8, 11, 12, 26, 27]. Similarly, it has
been used to develop fast algorithms for evaluation of fast oscillatory scattering operator
and Fourier integral operators [6, 24, 25]. The other way is to utilize low rank property
to develop fast algorithms to solve a large linear system Ax = b corresponding to a dis-
cretization of a PDE such as (1). Each column of the inverse matrix A−1 is a numerical
approximation of the Green’s function. Again low rank approximation for off-diagonal
submatrices of A−1, which is implied by high separability of the Green’s function on two
disjoint sets, is extensively explored in many fast algorithms to solve the linear system such
as hierarchical matrix and structured inverse methods [2, 3, 7, 15, 23, 29, 31, 32]. Often
the low rank approximation is computed or learned on the fly. Fast random algorithms
or rank revealing type of methods [14, 22] can be used to find the leading singular values
and corresponding singular vectors of a matrix. However, the computation cost increases
dramatically if the rank is not sufficiently low. So both upper and lower bound estimates
for approximate separability is of crucial importance in these applications.

In the literature, mostly upper bound estimates for highly separable cases were shown
for Green’s functions or kernel functions when developing fast numerical algorithms based
on low rank approximation as mentioned above. These estimates are typically based on
constructive approaches for Green’s functions or kernel functions with explicit expression
and using asymptotic expansion. Interesting study on spatial bandwidth and degree of
freedom of scattered field have also been done in the engineering literature [4, 5], which
shows that the scattered field is almost band limited and the degree of freedom is close to
the Nyquist number in term of the effective (spatial) bandwidth of the scattered field and to
the extension of the observation domain. A more general non-constructive mathematical
approach was developed in [2] to show that the Green’s function for a coercive elliptic
operator in divergence form with L∞-coefficients is highly separable (Theorem 2.8) for two
disjoint domains X,Y based on a key gradient estimate by Caccioppoli inequality. The
method and result can be extended to Green’s function of more general elliptic equations



4 BJÖRN ENGQUIST AND HONGKAI ZHAO

with non-dominant lower order terms, such as convection-diffusion equations with small
convection term or the Helmholtz equation (5) with small wave number k. Their method
does not work when the lower order term is dominant which is the case for the Helmholtz
equation with large k. It becomes a singularly perturbed problem and the gradient of
the Green’s function is unbounded almost everywhere as k → ∞ due to fast oscillations.
These issues are also reflected in numerical computation for these different PDEs. It
is well known that there are many efficient numerical methods to solve the discretized
system corresponding to differential operators that are elliptic dominant, such as iterative
methods with various effective preconditioners and direct inverse methods as mentioned
above. This is related to the intrinsic complexity manifested by the high separability of
the corresponding Green’s functions. On the other hand, it is well known that Helmholtz
equation with large wave number is very difficult to solve numerically in practice. For
example, all those well developed iterative methods for elliptic equations do not work
effectively for this case [10].

Here we give another mathematics perspective by showing lower bounds for the approxi-
mate separability of the Green’s function for Helmholtz equation in high frequency limit in
terms of both ε and k. The lower bounds, which are sharp for many practical setups, show
that the Green’s function is not highly separable as k → ∞ and manifests the intrinsic
complexity of the solution space. In our study we give

• explicit characterization of the correlation or angle (in L2 normed space) between
two Green’s functions of Helmholtz equation (5) in the high frequency limit,

(‖G(·,y1)‖2‖G(·,y2)‖2)−1

∫
X
G(x,y1)G(x,y2)dx . (k|y1 − y2|)−α, k|y1 − y2| → ∞

for some α > 0 which depends on the dimension ofX, its geometry and the locations
of y1,y2 (see Theorem 2.1) based on generalized stationary phase analysis.
• lower bound estimate for the approximate separability for the Green’s function of

Helmholtz equation in the high frequency limit

N ε
k &


k2α, α < s

2 ,

ks−δ, α ≥ s
2 ,

and upper bound estimate

N ε
k . k

s+δ

as k →∞ for two compact manifolds X and Y with dim(X) ≥ dim(Y ) = s and any
δ > 0, where the constants in & and . are independent of k for a fixed small ε (see
Lemma 3.1 and Theorem 3.1 - 3.4). The lower bound is based on a tight dimension
estimate improved from that for a set of nearly orthogonal random vectors by N.
Alon [1] and Johnson-Lindenstraus Lemma [19].
• explicit estimates and their sharpness for situations that are commonly used in

practice (see Section 4). Our theory is also applied to show precise conditions if
high separability (or low rank approximation after numerical discretization) can or
can not be achieved for special set ups.
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As far as we know, lower bound estimate for approximate separability of Green’s func-
tions of this type is the first in the literature. These bounds mathematically characterize
intrinsic complexities for high frequency wave phenomena. We hope these studies and un-
derstandings can provide useful insights for developing fast numerical algorithms as well.

2. Helmholtz equation and its Green’s function

Let G(x,y) be the Green’s function to the Helmholtz equation in free space,

(5) ∆xG(x,y) + k2n2(x)G(x,y) = δ(x− y), x,y ∈ Rd,

where k > 0 is the wave number, 0 < c < n(x) < C < ∞ is the index of refraction
and δ(x− y) denotes a point source at y. Suitable far field radiation condition has to be
satisfied for uniqueness. The high frequency limit means the wave number k →∞, which
poses challenge both mathematically and numerically due to faster and faster oscillations
in the solution.

For completeness, we provide the general formula for the free space Green’s function of
Helmholtz equation (5) for any space dimension,

(6) G0(x,y) = cdk
pH

(1)
p (k|x− y|)
|x− y|p

, p =
d− 2

2
, cd =

1

2i(2π)p
, x,y ∈ Rd,x 6= y.

H
(1)
p (r) is the first kind Hankel function of order p which has the following asymptotic

behavior: as r → 0

(7) H(1)
p (r) =

{
− i
πΓ(p)

(
2
r

)p
, p 6= 0

2i
π log r, p = 0

where Γ(p) is the Gamma function, and as r →∞

(8) H(1)
p (r) =

(
2

πr

) 1
2

ei(r−
pπ
2
−π

4
) +O(r−

3
2 ), p ≥ 0.

For d = 3, the Green’s function takes the simplest form

(9) G0(x,y) =
1

4π

eik|x−y|

|x− y|
, x 6= y.

For d = 2,

(10) G0(x,y) = − i
4
H

(1)
0 (k|x− y|) = − 1

2π

∫ ∞
0

eik|x−y| cosh θdθ, x 6= y,

and

(11) lim
r→0+

H
(1)
0 (r) =

2i

π
log r, lim

r→∞
H

(1)
0 (r) =

√
2

πr
ei(r−π/4) +O(r−3/2).
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Denote Bd
τ (y) and Sdρ(y) to be a ball and a sphere in Rd centered at y with radius τ

and ρ respectively. We have
(12)∫

Bnτ (y)
|G0(x,y)|2dx = c2

dk
2p

∫ τ

0
dρ

∫
Sdρ

[H
(1)
p (kρ)]2

ρ2p
ds = c2

dωdk
2p−2

∫ kτ

0
r[H(1)

p (r)]2dr,

where ωd = 2π
d
2

Γ( d
2

)
is the area of the unit sphere in Rd. From the asymptotic formula (7),

we see that G0 is square integrable at the singular source for d = 2, 3. Also from the

asymptotic formula (8), we have ‖G0(·,y)‖2(Bnτ (y)) ∼ k
d−3
2 as k →∞.

From the above explicit expressions for free space Green’s function, we see that except
for the case d = 3, there is a multiplication factor related to k for the magnitude of the
Green’s function. To characterize the angle or correlation between two Green’s function
and study the separability of the Green’s function without the effect of this factor, we
define the normalized Green’s function as

(13) Ĝ(x,y) =
G(x,y)

‖G(·,y)‖2
, x ∈ X ⊂ Rd, ‖G(·,y)‖22 =

∫
X
|G(x,y)|2dx,

in our later study with the following understandings:

• ‖G(·,y)‖2 is a smooth function of y since fast oscillation due to rapid change of
phase function is removed.
• When d = 3, all results for the normalized Green’s function Ĝ(x,y) can be extended

to G(x,y) since there are constants 0 < c < C <∞ that are independent of k such
that c < |G(x,y)| < C,∀x ∈ X,y ∈ Y , once two compact sets X,Y ⊂ R3 are fixed.
• In this paper we prove results for d = 2, 3 for practical interest. Since the Green’s

function is square integrable at the source singularity, we allow overlaps between
two compact domains X and Y when dim(X) = dim(Y ) = d = 2, 3. All results for
bounded and disjoint X and Y can be extended to d > 3.

Approximate separability of G(x,y) is defined as in (2) except that we now put a sub-
script k in N ε

k to specifically indicate the dependence on k. The key issue is the dependence
on k for a given ε > 0 as k →∞. In practice, such as development of fast algorithms uti-
lizing low rank approximation for the discretized system, X and Y are often disjoint and
compact. Typical norms used are either L∞(X × Y ) or L2(X × Y ). In our study we
first show analysis and results in L2 norm, which fits well with using SVD (singular value
decomposition) for low rank approximation of a matrix, and then extend those results to
L∞ norm. Regarding G(x,y) as a family of functions in L2(X) parametrized by y ∈ Y
(see Figure 1), the separability condition (2) in L2(X × Y ) is equivalent to the existence
of a linear subspace SX ⊂ L2(X) with dimension N ε

k such that

(14)

√∫
Y
‖G(x,y)− PSXG(x,y)‖2L2(X)dy ≤ ε,

where PSXG(x,y) is the projection of G(x,y) in SX . This formulation is the same with
the role of x and y exchanged.
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We start with the study of approximate separability of the Green’s function, G0(x,y),
for homogeneous medium, i.e., n2(x) ≡ 1 in (5), in free space. When 2-norm is used as
the metric, one important geometric characterization of relation between two vectors is the
angle or correlation between them. Let X ⊂ R3 be a compact domain and y1,y2 /∈ X be
two points with δ = |y1 − y2| � 1. It is easy to see that∣∣∣< Ĝ0(·,y1), Ĝ0(·,y2) > −1

∣∣∣ =

∣∣∣∣∣ 1

‖G0(·,y1)‖2‖G0(·,y2)‖2

∫
X

eik(|x−y1|−|x−y2|)

|x− y1||x− y2|
dx− 1

∣∣∣∣∣ . kδ
where the constant in . depends on domain X and the distance between X and y1,y2.
In another word, two Green’s functions become more and more correlated when the two
source points become closer and closer. This is true in general for Green’s function as
long as G(x,y) is Lipschitz in y. Actually for strictly elliptic operator of the following
divergence form in Rd, d ≥ 3,

(15) L = −
d∑

i,j=1

∂

∂xj
(aij(x)

∂

∂xj
), λ|ξ|2 ≤

d∑
i,j=1

aij(x)ξiξj ≤ µ|ξ|2,

where aij(x) are bounded measurable functions and 0 < λ ≤ µ < ∞ are two constants,
there exists a unique Green’s function [20, 13] G(x,y) satisfying

(16) c(d, λ, µ)|x− y|2−d ≤ G(x,y) ≤ C(d, λ, µ)|x− y|2−d,

where 0 < c(d, λ, µ) < C(d, λ, µ) <∞ are two constants. Given a compact domain X ⊂ Rd
and two points y1,y2 /∈ X, define

ρ = min[min
x∈X
|x− y1|,min

x∈X
|x− y2|], K =

C(d, λ, µ)

c(d, λ, µ)

[
1 +
|y1 − y2|

ρ

]d−2

.

Then we have

G(x,y2)

G(x,y1)
≤ C(d, λ, µ)

c(d, λ, µ)

[
|x− y1|
|x− y2|

]d−2

≤ C(d, λ, µ)

c(d, λ, µ)

[
|x− y2|+ |y1 − y2|

|x− y2|

]d−2

≤ K,

and vice versa. Given two disjoint compact domains X,Y ⊂ Rd, d ≥ 3, with ρ being the
distance between the two domains and r being the diameter of Y , the correlation between
any two Green’s function with sources at y1,y2 ∈ Y is bounded by

(17) 1 ≥< Ĝ(·,y1), Ĝ(·,y2) >X≥ K̃−2, K̃ =
C(d, λ, µ)

c(d, λ, µ)

[
1 +

r

ρ

]d−2

.

Also Caccioppoli inequality gives a L2 norm bound of the gradient of the Green’s function
away from the source singularity which is used in [2] to show that the Green’s function for
elliptic operator (and Helmholtz equation with small k) is highly separable. However, the
picture is quite different in the more challenging regime of high frequency limit since the
Green’s function becomes more and more oscillatory as k →∞.
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2.1. Decorrelation of Two Green’s Function in High Frequency Limit in Homo-
geneous Medium. Here we study the angle between two Green’s functions or how fast
they decorrelate in term of the ratio of the separation distance of the two source points
with respect to the wave length due to fast oscillations. Stationary phase theory will play
an important role here. Define

(18) φ̃(x) = |y1 − y2|−1(|x− y1| − |x− y2|).

We have |φ̃(x)| ≤ 1 and

(19)

∇φ̃(x) = |y1 − y2|−1
(

x−y1

|x−y1| −
x−y2

|x−y2|

)

D2φ̃(x) = |y1 − y2|−1

[
I− (x−y1)
|x−y1|

(x−y1)
T

|x−y1|
|x−y1| −

I− (x−y2)
|x−y2|

(x−y2)
T

|x−y2|
|x−y2|

]
.

|∇φ̃(x)| 6= 0 except for points on the line going through y1,y2 and outside the interval

between y1,y2, where maximum value 1 or minimum value -1 of φ̃ is attained (see Figure

2). Also D2φ̃(x) is degenerate in the direction of y1 − y2. However, for x on the line
and outside the interval between y1,y2, the Hessian in the plane perpendicular to the line,
denoted by D2

⊥, is a multiple of identity matrix I⊥ in the plane,

(20) D2
⊥φ̃(x) =

±1

|x− y1||x− y2|
I⊥,

where the sign depends whether maximum or minimum is attained at x.
From the stationary phase result [16, 30] for I(k) =

∫
eikφ(x)u(x)dx, where u ∈ C∞c (Rd)

and φ(x) has isolated stationary points xm,m = 1, 2, ..M, |∇φ(xm)| = 0 and D2φ(xm)
non-degenerate, one has

(21)

|I(k)− (2π
k )d/2

∑M
m=1

eikφ(xm)

|det[D2φ(xm)]|1/2 e
iπ
4

sgn(D2φ(xm))u(xm)|

≤ Ck−d/2−1‖[D2φ(xm)]−1‖d/2+1
∑

β≤s+2 ‖Dβu‖L2 ,

where s > d/2 and C is an universal constant independent of φ and u. However, we have to
modify the standard stationary phase technique due to the following three complications in
our case: (1) the stationary points may not be isolated, (2) the integration is on a compact
domain X and the integrand u is not C∞0 (X), and (3) there may be singularities in the
integrand. Here is our result.

Theorem 2.1. Assume X ⊂ Rd, d = 2, 3 is a compact domain with piecewise smooth
boundary. Ĝ0(x,y) is the normalized free space Green’s function. Depending on positions
of y1,y2 relative to X and its boundary, there is some α > 0 such that

(22)
∣∣∣< Ĝ0(·,y1), Ĝ0(·,y2) >

∣∣∣ . (k|y1 − y2|)−α, min{1, d− 1

2
} ≤ α ≤ d+ 1

2

as k|y1 − y2| → ∞. The constant in . depends on X and the distances from y1,y2 to X.
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X

y
1

y
2 r

ξ
η

y
1

y
2

X

X

y
1

y
2

case 1 case 2 case 3

Figure 2. Different positions of y1,y2 relative to X

Proof. We prove for d = 3 first. Define

(23)

k̃ = k|y1 − y2|, φ̃(x) = |y1 − y2|−1(|x− y1| − |x− y2|),

u(x) = 1
‖G0(·,y1)‖2‖G0(·,y2)‖2|x−y1||x−y2| ,

and the operator

(24) L =
1

|∇φ̃(x)|2

3∑
j=1

∂φ̃

∂xj

∂

∂xj
LT = −

3∑
j=1

∂

∂xj

1

|∇φ̃(x)|2
∂φ̃

∂xj
.

we have

(25)
∣∣∣< Ĝ0(·,y1), Ĝ0(·,y2) >

∣∣∣ =

∣∣∣∣∫
X
eik̃φ̃(x)u(x)dx

∣∣∣∣
Denote the line going through y1,y2 by ly2

y1 and the part of ly2
y1 outside the open interval

between y1,y2 by l̃y2
y1 . Depending on the positions of y1,y2 relative to the domain X, we

consider the three generic cases illustrated in Figure 2. All other cases can be deduced
from these three cases.

Case 1. l̃y2
y1 ∩ X = ∅, see Figure 2. Since there is no stationary point in X, i.e.,

|∇φ̃(x)| > c > 0,∀x ∈ X, and u(x) is smooth in X, from integration by part we have
(26)∫

X e
ik̃φ̃(x)u(x)dx = 1

ik̃

∫
X(Leik̃φ̃(x))u(x)dx

= 1
ik̃

[∫
X e

ik̃φ̃(x)(LTu(x))dx +
∫
∂X |∇φ̃(x)|−2(

∑3
j=1 νj

∂φ̃
∂xj

)eik̃φ̃(x)u(x)dS(x)
]

= − 1
k̃2

[∫
X e

ik̃φ̃(x)((LT )2u(x))dx +
∫
∂X |∇φ̃(x)|−2(

∑3
j=1 νj

∂φ̃
∂xj

)eik̃φ̃(x)LTu(x)dS(x)
]

+ 1
ik̃

∫
∂X |∇φ̃(x)|−2(

∑3
j=1 νj

∂φ̃
∂xj

)eik̃φ̃(x)u(x)dS(x).

Integration by part can be continued. However, the leading term is the last term which is
an oscillatory integral on the boundary ∂X. If the phase function φ̃(x) has isolated local

minima and maxima on ∂X and D2φ̃(x) is not degenerate along ∂X at those extrema, the
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boundary integral in the last term is . k̃−
d−1
2 by the stationary phase theory. Hence

(27)

∣∣∣∣∫
X
eik̃φ̃(x)u(x)dx

∣∣∣∣ . k̃− d+1
2 , as k̃ →∞.

If there is a piece of the boundary ∂X stays on a level set of φ̃(x), see Figure 3, the phase

function φ̃(x) is constant on that piece, the boundary integral in the last term is . 1 and
hence

(28)

∣∣∣∣∫
X
eik̃φ̃(x)u(x)dx

∣∣∣∣ . k̃−1, as k̃ →∞.

All other scenarios are bounded in between.

1

X

y
1

y
2

2
|x−y |−|x−y |=c

Figure 3. A piece of the boundary ∂X stays on a level set of φ̃(x)

Case 2. y1,y2 are outside X but l̃y2
y1 ∩ X 6= ∅, see Figure 2. Both φ̃(x) and u(x) are

smooth in X. However, all points on the line segment l̃y2
y1 ∩X are stationary points with

the same phase. Let’s use a new coordinate system to evaluate the integral. The new
orthogonal coordinate system is (r, ξ, η), where the origin is at y1 and r-axis is in the
direction y1 − y2, and (ξ, η) is an orthogonal system perpendicular to r, see Figure 2 (b).
So

(29)

∫
X
eik̃φ̃(x)u(x)dx =

∫ r2

r1

∫
X(r)

eik̃φ̃(r,ξ,η)u(r, ξ, η)dξdηdr

where X(r) denotes the intersection of X with the plane (r, ξ, η) at a fixed r and r1 =
min(r,ξ,η)∈X r, r2 = max(r,ξ,η)∈X r.

For a fixed r ∈ [r1, r2], if l̃y2
y1 ∩X(r) = (r, 0, 0), it is the only stationary point in the plane

(r, ξ, η). Moreover, we have

(30)

φ̃(r, 0, 0) = 1,

D2
ξηφ̃(r, 0, 0) = 1

r(|y1−y2|+r)I,

u1(r, 0, 0)|ψ=0 = 1
‖G0(·,y1)‖2‖G0(·,y2)‖2r(|y1−y2|+r) ,

where I is a 2×2 identity matrix. For each r, one can use a partition of unity for the domain
X(r) in (ξ, η) plane: χ1(r, ξ, η) + χ2(r, ξ, η) ≡ 1, ∀(r, ξ, η) ∈ X(r). 0 ≤ χ1(r, ξ, η) ≤ 1 is
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smooth and is 1 in a small ball centered at (r, 0, 0) and inside X(r). χ1(r, ξ, η) is zero near
the boundary of ∂X(r). Denote ui = χiu, i = 1, 2, then
(31)∫
X(r)

eik̃φ̃(r,ξ,η)u(r, ξ, η)dξdη =

∫
X(r)

eik̃φ̃(r,ξ,η)u1(r, ξ, η)dξdη+

∫
X(r)

eik̃φ̃(r,ξ,η)u2(r, ξ, η)dξdη

Since there is no stationary point in the second integral, one can use integration by part
argument as in case 1 to show that it is . k̃−1. For the first integral, (r, 0, 0) is the only
stationary point. Apply the standard stationary phase result and from (30) we get

(32)

∣∣∣∣∣
∫
X(r)

eik̃φ̃(r,ξ,η)u1(r, ξ, η)dξdη − 2πik̃−
d−1
2 eik̃

‖G0(·,y1)‖2‖G0(·,y2)‖2

∣∣∣∣∣ . k̃− d+1
2

It is important to note that the phase in the leading term after integration in (ξ, η) over
X(r) is independent of r, which means no fast oscillation when integrating in r.

For a fixed r ∈ [r1, r2], if l̃y2
y1 ∩ X(r) = ∅, there is no stationary point in X(r). Hence∫

X(r) e
ik̃φ̃(r,ξ,η)u2(r, ξ, η)dξdη will be less than the case when l̃y2

y1 ∩X(r) 6= ∅. So we have

(33)

∣∣∣∣∫
X
eik̃φ̃(x)u(x)dx

∣∣∣∣ =

∣∣∣∣∣
∫ r2

r1

∫
X(r)

eik̃φ̃(r,ξ,η)u(r, ξ, η)dξdηdr

∣∣∣∣∣ . k̃min{−1, 1−d
2
} = k̃−1,

since d−1
2 = 1 for d = 3.

Case 3. Let’s consider the most general case where y1 and (or) y2 are in the interior
of X, see Figure 2. The main contribution still comes from the line of stationary points
l̃y2
y1 ∩X. However, singularities of u at y1 and y2 have to be taken care of. Assume that

there is a ball with radius r0 < |y1 − y2|/4 around each point y1,y2 contained in X.
First, design a partition of unity functions, χ0(x), χ1(x), χ2(x), each of which is smooth
and non-negative and χ0(x) +χ1(x) +χ2(x) = 1, ∀x ∈ X. Here χ1(x), χ2(x) are 1 in a ball
centered at y1,y2 respectively with radius r0/2 and are zeros outside the ball with radius
r0. χ0(x) = 1− χ1(x)− χ2(x). Denote

u(x) = u(x)[χ0(x) + χ1(x) + χ2(x)] = u0(x) + u1(x) + u2(x).

We break the integral in (25) into three parts:

(34)

∫
X
eik̃φ̃(x)u(x)dx =

∫
X
eik̃φ̃(x)(u0(x) + u1(x) + u2(x))dx = I+II+III.

The first term can be reduced to Case 2. Now let’s look at the second term in (34). We
change the integration to a spherical coordinate (r, θ, ψ) centered at y1 with θ ∈ [0, 2π]
being the azimuthal angle, ψ ∈ [0, π] being the polar angle and y1 − y2 being the polar
axis. Then

(35)

∫
X
eik̃φ̃(x)u1(x)dx =

∫ r0

0

∫
∂B(y1,r)

eik̃φ̃(x)u1(x)dsdr
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It can be seen from (19) that ∇φ̃(x; y1,y2) is never aligned with the normal at x of the
sphere centered at y2 except at the intersections of ly2

y1 with the sphere. So on any sphere
∂B(y1, r) there are exactly two stationary points at ψ = 0 and ψ = π which are non-
degenerate. At the two stationary points we have

(36)

φ̃(r, θ, 0) = 1

D2
⊥φ̃(r, θ, 0) = −1

r(r+|y1−y2|)I⊥

u1(r, θ, 0) = χ1(r,θ,0)
‖G0(·,y1)‖2‖G0(·,y2)‖2r(|y1−y2|+r)

φ̃(r, θ, π) = |y1 − y2|−1(2r − |y1 − y2|)

D2
⊥φ̃(r, θ, π) = |y1−y2|−2r

r(|y1−y2|−r)I⊥

u1(r, θ, π) = χ1(r,θ,π)
‖G0(·,y1)‖2‖G0(·,y2)‖2r(|y1−y2|−r)

where ⊥ denotes the tangent plane of the sphere. Note that modulo a scaling factor r−1,
u1 and its derivatives, and D2

⊥φ̃ as functions on ∂B(y1, r) are all smooth and uniformly

bounded, i.e., |Dβ
⊥u1| = O(r−1) and ‖D2

⊥φ̃‖ = O(r−1). After scaling ∂B(y1, r) to the unit
sphere and apply the stationary phase result (21) to the two stationary phase points, one
gets
(37)∣∣∣∣∫∂B(y1,r)

eik̃φ̃(x)u1(x)ds− 2πir2k̃−
d−1
2

‖G0(·,y1)‖2‖G0(·,y2)‖2 [−eik̃χ1(r, θ, 0) + eik̃|y1−y2|
−1(2r−|y1−y2|)χ1(r,θ,π)
|y1−y2|−2r ]

∣∣∣∣
. k̃−

d+1
2 r2.

The righthand side in the above expression comes from an estimate of the righthand side
term of the stationary phase formula (21) and the constant in . is uniformly bounded
when r → 0. The first term in the square bracket is the leading term from the stationary
phase at ψ = 0 on the sphere ∂B(y1, r) and the phase is constant in r. The second term
in the bracket is the leading term from the stationary phase at ψ = π on the sphere
∂B(y1, r). However, it has a phase dependent on r which results in a higher order term
after integration in r. Since all terms are integrable as r → 0, we have

(38)

∣∣∣∣∫
X
eik̃φ̃(x)u1(x)dx

∣∣∣∣ =

∣∣∣∣∣
∫ r0

0

∫
∂B(y1,r)

eik̃φ̃(x)u1(x)dsdr

∣∣∣∣∣ . k̃− d−1
2 .

The third term in (34) can be shown in the same way.

From the above analysis we see that the main contribution for the integral of<Ĝ0(·,y1), Ĝ0(·,y2)>X
may come from the stationary line l̃y2

y1 and/or the boundary integral on ∂Ω after integration
by part. All other cases can be reduced to the above three cases.
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In 2D, the Green’s function in free space is of the form (10) with the asymptotic formulas
(11). For Case 1 and 2, the asymptotic formula (11) for r → ∞ can be used as k → ∞.

Since the phase function in the exponential for < Ĝ0(·,y1), Ĝ0(·,y2) > is also of the form
k(|x−y1|− |x−y2|), same arguments used above can be applied. So we have the following
analogous results in 2D:

Case 1. Since the boundary ∂X is a one dimensional curve, there is some α, 1 ≤ α ≤
d+1

2 = 3
2 , such that

(39)
∣∣∣< Ĝ0(·,y1), Ĝ0(·,y2) >

∣∣∣ . (k|y1 − y2|)−α, as k|y1 − y2| → ∞

Case 2. The leading contribution is due to the line of stationary phase l̃y2
y1 except that the

dimension orthogonal to the line is 1D, we have d−1
2 = 1

2 and

(40)
∣∣∣< Ĝ0(·,y1), Ĝ0(·,y2) >

∣∣∣ . (k|y1 − y2|)−
1
2 , as k|y1 − y2| → ∞

Case 3. The singularity at the source is also integrable hence

(41)
∣∣∣< Ĝ0(·,y1), Ĝ0(·,y2) >

∣∣∣ . (k|y1 − y2|)−
1
2 , as k|y1 − y2| → ∞

�

Here we give a few remarks related to the theorem above.

Remark 2.1. For d = 3, the same estimate also holds for two unnormalized Green’s func-

tions, i.e., |< G0(·,y1), G0(·,y2) >| ∼
∣∣∣< Ĝ0(·,y1), Ĝ0(·,y2) >

∣∣∣, since 0 < c < ‖G0(·,y)‖L2(X) <

C <∞ as k →∞ for two constants c and C that only depend on X. However, this is not

true for d = 2. If y1,y2 /∈ X, |< G0(·,y1), G0(·,y2) >| ∼ k−
1
2

∣∣∣< Ĝ0(·,y1), Ĝ0(·,y2) >
∣∣∣ as

k →∞ due to the asymptotic formula (11).

Remark 2.2. The estimate in Theorem 2.1 characterizes the correlation or angle between
two normalized Green’s function in term of the ratio of the separation distance between the
two sources and the wavelength. One can also incorporate another scaling factor when the
distance from the two points yi, i = 1, 2 to X is large compared to y1−y2|. Geometrically,
this means that the difference between two distance functions, |x− y1| − |x− y2|, changes
slowly with respect to x ∈ X. Hence fast oscillation due to rapid change of the phase
function, ik(|x − y1| − |x − y2|) is discounted and the decorrelation rate of two Green’s
function is reduced.

Assume the size of X is O(1) (otherwise one can first scale x by the size of X for the

Helmholtz equation (5)) and |y1−y2|
dist(y1,X) ∼

|y1−y2|
dist(y2,X) ∼ ρ� 1, which falls into either Case 1

or Case 2 in Theorem 2.1. From (19), we see that ∇φ̃ is scaled by ρ and D2φ̃,det[D2φ̃] are
scaled by ρ, ρd respectively when they are not degenerate. The scaling for u(x) is canceled
due to the normalization according to the definition (23). When applying the stationary
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phase result (21) at a point of stationary phase, one can see that k̃ is rescaled to k̃ρ if

k̃ρ→∞. For Case 1, the main contribution for
∣∣∣< Ĝ0(·,y1), Ĝ0(·,y2) >

∣∣∣ comes from the

last term in (26). There is a scaling factor of ρ−1 from |∇φ̃|−1 due to the integration by part

and there are isolated stationary points on ∂X in general. So overall k̃ is rescaled to k̃ρ for

Case 1. For Case 2 in Theorem 2.1, the main contribution for
∣∣∣< Ĝ0(·,y1), Ĝ0(·,y2) >

∣∣∣
comes from the line of stationary phase in general, where Dφ̃ and D2φ̃ are degenerate.
Along the line of stationary phase, D2

⊥φ̃ and det[D2
⊥φ̃] is scaled by ρ2 and ρ2(d−1) respec-

tively from (20). Applying the stationary phase result (21) in the plane perpendicular to

the line of stationary phase, k̃ is rescaled to k̃ρ2. From both cases we see that k̃ is at least
rescaled to k̃ρ in the decorrelation estimate for two Green’s function.

Remark 2.3. One can generalize the arguments in Theorem 2.1 to more general situations
where X is a compact manifold embedded in Rd with dim(X) = s < d, such as a surface
(s = 2) in R3 or a curve (s = 1) in Rd, d = 2, 3. For example, if X is a compact manifold
without boundary, e.g., a closed surface or curve, and two points y1,y2 /∈ X, there is some
α, 0 ≤ α ≤ s

2

(42)
∣∣∣< Ĝ0(·,y1), Ĝ0(·,y2) >

∣∣∣ . (k|y1 − y2|)−α, as k|y1 − y2| → ∞.

The two extreme cases are: (1) α = 0 happens when there is a piece of X stays on a level

set of the phase function φ̃(x) = |y1 − y2|−1(|x− y1| − |x− y2|); (2) α = s
2 happens if the

phase function φ̃(x), which has stationary phase points on a compact manifold, has isolated

stationary phase points on X and D2φ̃(x) is not degenerate along X at those points. The
later case is more generic.

If X is a compact manifold with boundary, there is some α, 0 ≤ α ≤ s+1
2 such that

(43)
∣∣∣< Ĝ0(·,y1), Ĝ0(·,y2) >

∣∣∣ . (k|y1 − y2|)−α, as k|y1 − y2| → ∞.

The two extreme cases are: (1) α = 0 happens when there is a piece of X stays on a level

set of the phase function φ̃(x); (2) α = s+1
2 happens if the phase function φ̃(x) has no

stationary phase in X and has isolated stationary phase points on ∂X and D2φ̃(x) is not
degenerate along ∂X at those points. If there are isolated stationary phase points in the
interior of X, α = s

2 .

Remark 2.4. According to the Hessian estimate (20), there are two axisymmetric k de-

pendent domains around the stationary line l̃y2
y1 on each side of y1 and y2, denoted by R1

and R2 respectively (see Figure 4), in which the phase function k̃φ̃ does not change rapidly.

For example, let’s look at a point x ∈ l̃y2
y1 on the side of y2 and denote r = ±|x − y2|.

Again we use the coordinate system x = (r, ξ, η) as shown in Figure 4. Since φ̃(r, 0, 0) =

1, |∇φ̃(r, 0, 0)| = 0, r > 0, for a point (r, ξ, η) with r > 0,
√
ξ2 + η2 . r(r+|y1−y2|)

k|y1−y2| , from
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(20) we have

(44) k̃|∇φ̃(r, ξ, η)| . k|y1 − y2|
√
ξ2 + η2

r(r + |y1 − y2|)
. 1.

Hence < Ĝ0(·,y1), Ĝ0(·,y2) > is not an oscillatory integral in R1 or R2 and the two Green’s
functions do not decorrelate fast in a subdomain contained in these two domains. We will
also provide special k dependent setups of domains X,Y such that G(x,y1) and G(x,y2)
do not decorrelate fast in X for two sources y1,y2 ∈ Y in Section 4.2.

2

y
1

y
2 r

ξ

ζ

R

Figure 4. A domain where two Green’s functions do not decorrelate fast.

Remark 2.5. The correlation between two Green’s function can also be used for study
imaging resolution using waves. Suppose X is a compact planar region in R3 where the wave
field is measured. y1,y2 ∈ R3 are two point sources or scatterers. If the line connecting y1

and y2 is parallel to X, we have |< G0(·,y1), G0(·,y2) >| . (k|y1 − y2|)−
3
2 in general as

k|y1 − y2| → ∞ since there is no stationary phase. While if the line connecting y1 and y2

intersects X perpendicularly, |< G0(·,y1), G0(·,y2) >| . (k|y1−y2|)−
1
2 as k|y1−y2| → ∞

since the intersection point is a stationary point. Hence it implies imaging resolution in
the range direction is poorer than that in the plane parallel to X.

2.2. Decorrelation of Two Green’s Function in Inhomogeneous Medium in High
Frequency Limit. The situation is similar for inhomogeneous medium in the high fre-
quency limit when the Green’s function has a valid geometric optics approximation. The
assumption for geometric optics ansatz is that the solution to the Helmholtz equation has
the following expansion:

(45) u(x) = eikφ(x)
∞∑
m=0

am(x)(ik)−m,

where φ(x) is the phase function and am(x) are the amplitude functions which satisfy

(46)
|∇φ(x)| = n(x), 2∇φ(x) · ∇a0(x) + ∆φ(x)a0(x) = 0

2∇φ(x) · ∇am(x) + ∆φ(x)am(x) + ∆am−1(x) = 0, m = 1, 2, . . .
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For the Green’s function G(x,y) defined in (5), we have the following condition at the
source point y:

(47) lim
x→y

(
φ(x,y)

|x− y|
− n(y)

)
= 0, lim

x→y
a0(x,y)4π|x− y| = 1.

The above geometric optics ansatz can be formulated as a Hamiltonian system, also
called as Lagrangian formulation or ray tracing, which gives explicit ordinary differen-
tial equations (ODE) for bicharacteristics (x(t),p(t)) in phase space with Hamiltonian
H(x,p) = |p| − n(x) and p = ∇φ,

(48)

dx(t,x0,p0)

dt
= ∇pH(x,p) =

p

n(x)
, x(0) = x0,

dp(t,x0,p0)

dt
= −∇xH(x,p) = ∇n(x), p(0) = p0 = ∇φ(x0)

dφ(x(t,x0,p0))

dt
= ∇φ · dx

dt
= n(x), φ(0) = φ(x0)

The projection of the bicharacteristics in the physical space, i.e., x(t,y0,p0), are called
rays. If there is no caustics, i.e., two rays do not intersect in the physical space, each ray
is a geodesic in the physical space with the slowness n(x) = 1

c(x) as the metric, where c(x)

is the wave speed. |φ(x(t2,x0,p0)) − φ(x(t1,x0,p0))| is the shortest travel time between
points x(t1,x0,p0) and x(t2,x0,p0). Moreover, the amplitude along each ray is given by

(49) a2
0(x(t,x0)) = a2

0(x0)
n(x0)

n(x(t,x0))

∣∣∣∣∂x(t,x0)

∂x0

∣∣∣∣−1

,

where
∣∣∣∂x(t,x0)

∂x0

∣∣∣ is the determinant of the Jacobian ∂x(t,x0)
∂x0

meaning the geometric spreading

of rays. Before caustics are formed, the determinant is always positive and bounded. Once
a0(x) is known, a1(x), a2(x), . . . can be solved consecutively from (46).

In particular, for the geometric optics ansatz for the Green’s function with a point
source at y0, rays x(t,y0, θ̂) are emanating from the source y0 in all directions and can

be parametrized by the initial directions, i.e., the take-off angles θ̂ ∈ Sd−1 on a unit
sphere. The ODEs for the rays (48) have initial conditions x(0,y0, θ̂) = y0,p(0,y0, θ̂) =

n(y0)θ̂, φ(0,y0, θ̂) = 0, with a0(0, θ̂) evenly distributed in all θ̂. If there is no caus-

tics, every point x has a unique ray passing through it, i.e., ∀x, ∃!t(x), θ̂(x) such that

x(t(x),y0, θ̂(x)) = x. Moreover, the ray connecting y0 and x is the geodesic, or the short-
est travel time, between the two points with n(x) being the slowness of the medium. Under
no caustics assumptions, the Greens functions with sources at y1,y2 can be approximated
by the following geometric optics ansatz

(50)
∣∣∣G(x,yj)− eikφ(x,yj)Aj(x)

∣∣∣ . k−(M+1), j = 1, 2,
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where Aj(x) =
∑M

m=0 am(x,yj)(ik)−m, j = 1, 2. Hence

(51)

∣∣∣∣< Ĝ(·,y1), Ĝ(·,y2) > −
∫
X
eik̃φ̃(x)u(x)dx

∣∣∣∣ . k−(M+1),

where

k̃ = kφ(y1,y2), φ̃(x) = φ−1(y1,y2)(φ(x,y1)−φ(x,y2)), u(x) =
A1(x)A2(x)

‖G(·,y1)‖2‖G(·,y2)‖2

Denote Γy2
y1 to be the unique ray that passes through y1 and y2 as illustrated in Figure 5

(a). If n(x) is smooth and 0 < c ≤ n(x) ≤ C <∞, one has (see Figure 5(b))

c|y1 − y2| ≤ φ(y1,y2) ≤ C|y1 − y2|, |φ(x,y1)− φ(x,y2)| ≤ φ(y2,y1)

So the phase function φ̃(x) attains the global maximum or minimum ±1 on the part of

the ray Γy2
y1 which is outside the interval between y1 and y2, denoted by Γ̃y2

y1 . Moreover,

∇xφ(x,y1) − ∇xφ(x,y2) 6= 0 for any x that is not on Γ̃y2
y1 because the two different and

unique geodesics connecting x,y1 and x,y2 respectively can not be tangent at x . So Γ̃y2
y1

is a stationary curve in the inhomogeneous case and plays the same role as the straight
line l̃y2

y1 in the homogeneous case. Depending on whether the ray passes through X or not,
we get the same results as in Theorem 2.1 because kφ(y1,y2) ∼ k|y1 − y2|. This is true
when y1 and/or y2 are in X as well since the amplitude a0 satisfying (47) has exactly the
same singularity as the homogeneous Green’s function.

The main complication for geometric optics ansatz in heterogeneous medium is when
rays cross each other, i.e., when caustics are formed. Although bicharacteristics in phase
space are still well defined, the amplitude formula (49) breaks down. So in general, the
above arguments can not be carried over to a general inhomogeneous medium. However, in
the case that there are finite number of rays starting from y1 going through y2 and there is
a partition of unity for the takeoff angle θ̂ on Sd−1 such that there is a small cone around
each ray where there is no caustics, then one can apply the above argument to each cone
and get the same results.

ray

y
1 y

2

X

y
1

Γ
y

2

)y
1 y

2

X

xφ(x,y
1

)

φ(y φ(x,y
2

)1
,y

2

(a) (b)

Figure 5. Rays in inhomogeneous medium
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3. Approximate Separability Estimate for the Green’s function of
Helmholtz equation in High Frequency Limit

In this section we present general estimates for the approximate separability of Green’s
function of Helmholtz equation in the high frequency limit. In the next section, we will
apply these results to get explicit estimates for special setups that are of interest in practice.
These estimates imply rank estimates for discretized operators which are important for
developing fast algorithms for solving high frequency Helmholtz equation and its boundary
integral equation counterpart.

3.1. Approximating a Set of Almost Orthogonal Vectors by a Linear Subspace.
First we present some background and introduce definitions for the approximation of a set
of vectors using a linear subspace. It will be extended later to the approximation of Green’s
function in the infinite dimensional function space. Let vm ∈ Rd,m = 1, 2, . . . , N be a set
of vectors. Define matrix V = [v1,v2, . . . ,vN ] and matrix A = [amn]N×N = V TV . Let

λ1 ≥ λ2 ≥ . . . ≥ λN ≥ 0 be the eigenvalues of A, then tr(A) =
∑N

m=1 λm =
∑N

m ‖vm‖22.√
λ1 ≥

√
λ2 ≥ . . . ≥

√
λN ≥ 0 are also called singular values for V . The best linear

subspace Sl of all linear subspace Sl of dimension l that approximates the set of vectors
{vm}Nm=1 in least square sense is the space spanned by the first l left singular vectors of V
and satisfies

(52)

N∑
m

‖vm − PSlvm‖
2
2 = min

Sl,dim(S)=l

N∑
m

‖vm − PSlvm‖
2
2 =

N∑
m=l+1

λm,

where PSlv denotes projection of v in Sl. In another word,

(53) λl = max
ê∈Rd,‖ê‖2=1,ê⊥Ŝl−1

N∑
j

|vj · ê|2,

is the maximum reduction of approximation error in term of least square for the set of
vectors {vm}Nm=1 when adding one more dimension to the previous optimal l−1 dimensional
linear subspace. Here we introduce two definitions for approximate rank estimate for a
symmetric non-negative matrix A.

Definition 3.1. Given ε > 0, N
ε

= max1≤m≤N m, s.t.
√
λm ≥ ε, i.e.,N

ε
denotes the

largest m such that
√
λm ≥ ε.

Definition 3.2. Given 1 ≥ ε > 0, N ε = minM, s.t.
∑N

m=M+1 λm ≤ ε2
∑N

m=1 λm.

If A = V TV , definition 3.2 implies that if a linear subspace Sε satisfies

(54)

∑N
m=1 ‖vm − PSεvm‖22∑N

m=1 ‖vm‖22
≤ ε2
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then dim(Sε) ≥ N ε. Assume 0 < c < ‖vm‖2 < C < ∞,m = 1, 2, . . . , N , we can conclude
that if a linear subspace Sε satisfies

(55)

√∑N
m=1 ‖vm − PSεvm‖22

N
≤ cε ⇒

∑N
m ‖vm − PSεvm‖22∑N

m=1 ‖vm‖22
≤ ε2

then dim(Sε) ≥ N ε. In another word, the least dimension of a linear subspace that can have
an cε-r.m.s. (root mean square) approximation of a set of vectors vm,m = 1, 2, . . . , N is
at least N ε. The root mean square approximation will lead to L2 approximate separability
estimate for Green’s function in the continuous case.

In the previous section, we proved the rate of decorrelation of two Green’s function: | <
Ĝ(·,y1), Ĝ(·,y1) > | . (k|y1−y2|)−α for some α > 0 as k|y1−y2| → ∞. Geometrically it
means that two Green’s functions with sources separated a little more than one wavelength
become almost orthogonal as k →∞. Intuitively, for two domains X,Y ⊂ Rd, if one views
G(x,y) as a family of functions in L2(X) parametrized by y ∈ Y and lays downs a uniform
grid yj ∈ Y with grid size h = k−β for any 0 < β < 1, G(x,yj) is a set of almost orthogonal
vectors in L2(X). A natural question is the least number of dimensions of a linear space
that can contain a set of almost orthogonal vectors. This question has been studied in [1] by
rank estimate for small off-diagonal perturbation of identity matrices, which is equivalent to
the same question for a set of almost orthogonal unit vectors. In particular, the asymptotic
estimate is optimal and is used to show the sharpness of Johnson-Lindenstraus Lemma [19].
However, this result can not address our problem adequately for the following two reasons.
First, the assumption in [1] on almost orthogonality for a set vectors is only pairwise.
In our problems, the set of vectors are Green’s functions for a PDE which has spatial
structure, i.e., the angle between two Green’s functions depends on separation distance of
the two sources. The spatial structure has to be taken into account to get sharp estimates.
Second, approximate separability means that we need to estimate the least dimension of
a linear subspace that can approximate a set of vectors to a certain tolerance instead of
containing the whole set of vectors. Here we adopt the approach from [1] and develop
more careful estimates in Lemma 3.1 for a set of Green’s functions by taking into account
both the spatial structure and approximation tolerance. The lemma is then used to prove
lower bound estimates for approximate separability of the Green’s function for Helmholtz
equation in the high frequency limit.

For more generality, we assume X,Y are two compact manifolds embedded in Rd, i.e.,
they may be compact domains in Rd, or compact surfaces embedded in R3 or compact
curves embedded in Rd, d = 2 or 3. Without loss of generality, we assume d ≥ dim(X) ≥
dim(Y ) = s. For a smooth manifold Y with dim(Y ) = s = 1, 2, 3, it contains a local
patch of size O(1) that is diffeomorphism to a one dimensional line of unit length, a two
dimensional unit square and a three dimensional unit cube respectively, which we will only
consider in the following analysis. Let G(x,y) be the Green’s function of the Helmholtz
equation (5). The following Lemma 3.1 shows the dimension estimate for a linear subspace
in L2(X) which approximate of a set of Green’s function G(x,ym),ym ∈ Y with ε-r.m.s
error.
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Lemma 3.1. Let X,Y be two compact manifolds embedded in Rd, d = 2, 3 and d ≥
dim(X) ≥ dim(Y ) = s. If for any two points y1,y2 ∈ Y ,

| < Ĝ(·,y1), Ĝ(·,y2) > | . (k|y1 − y2|)−α as k|y1 − y2| → ∞

for some α > 0, then there are points ym ∈ Y,m = 1, 2, . . . , N s
δ ∼ ks−δ, for any 0 < δ < 1

and arbitrary close to 0, such that for the set of Green’s functions {G(x,ym)}N
s
δ

m=1 ⊂ L2(X)

and matrix A =< Ĝ(·,ym), Ĝ(·,yn) >

(56) N ε
k &


(1− ε2)2k2α, α < s

2 ,

(1− ε2)2ks−δ, α ≥ s
2 ,

and

(57) N
ε
k .

 ε−4k2(s−α−δ), α < s
2 ,

ε−4ks−δ, α ≥ s
2 ,

as k →∞, where the constants in . and & only depend on X, Y and n(x).

Proof. We prove the statement for X,Y ⊂ R3 and dim(Y ) = s = 1, 2, 3 respectively. The
case for X,Y ⊂ R2 can be proved in exactly the same way.

Case 1: s = 1. Y is a line of unit length in R3. Put down a uniform grid ym in Y with
grid size h = kδ−1, 0 < δ < 1, such that |ym− yn| ∼ |m− n|h, m, n = 1, 2, . . . , nhk = k1−δ.
See Figure 6(a). Define the matrix

(58) A = (amn)nhk×n
h
k
, amn =< Ĝ(·,ym), Ĝ(·,yn) >,

where

(59) amm = 1, |amn| . |m− n|−αk−αδ, m, n = 1, 2, . . . , nhk .

Let λ1 ≥ λ2 ≥ . . . ≥ λnhk
≥ 0 be the eigenvalues of A. Then

∑nhk
m=1 λm = nhk . Since N

ε
k =

max1≤m≤nhk
m, s.t.

√
λm ≥ ε and N ε

k = minM, s.t.
∑nhk

m=M+1 λm ≤ ε2
∑nhk

m=1 λm = ε2nhk ,

we have
Nε
k∑

m=1

λm ≥ (1− ε2)

nhk∑
m=1

λm = (1− ε2)nhk

and

(60)

nhk∑
m=1

λ2
m >

Nε
k∑

m=1

λ2
m ≥ N ε

k

[
(1− ε2)nhk

N ε
k

]2

=
[(1− ε2)nhk ]2

N ε
k

,

and

(61)

nhk∑
m=1

λ2
m >

N
ε
k∑

m=1

λ2
m ≥ N

ε
kε

4.
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At the same time, for a fixed α > 0 and take 0 < δ < 1 arbitrary close to 0,

(62)

∑nhk
m=1 λ

2
m = tr(ATA) =

∑nhk
m=1

∑nhk
n=1 a

2
mn

=
∑nhk

m=1 a
2
mm + 2

∑nhk−1
n=1

∑nhk
m=n+1 a

2
m,m−n

. nhk + 2
∑nhk−1

n=1 (nhk − n)n−2αk−2αδ

.


k1−δ + k2(1−δ−α) . k2(1−δ−α), α < 1

2 , 2α < 1− δ < 1

k1−δ + k1−2δ ln k . k1−δ, α = 1
2 , 0 < δ < 1

k1−δ + k1−δ−2αδ . k1−δ, α > 1
2 , 0 < δ < 1

Hence for a fixed α > 0 and any 0 < δ < 1 arbitrary close to 0, combining (60) and (62)
we have

(63) N ε
k &

 (1− ε2)2k2α, α < 1
2

(1− ε2)2k1−δ, α ≥ 1
2

,

and combining (61) and (62) we have

(64) N
ε
k .

 ε−4k2(1−α−δ), α < 1
2

ε−4k1−δ, α ≥ 1
2

.

Case 2: s = 2. Y is a unit square in R3. Again put down a uniform grid ym,m =
1, 2, . . . , nhk = k2(1−δ) in Y with grid size h = kδ−1, 0 < δ < 1 (see Figure 6(b)), and define

matrix A as in (58). Let λ1 ≥ λ2 ≥ . . . ≥ λnhk
≥ 0 be its eigenvalues, then

∑nhk
m=1 λm = nhk

and we have (60), (61). At the same time

(65)

nhk∑
m=1

λ2
m = tr(ATA) =

nhk∑
m=1

nhk∑
n=1

a2
mn.

Let’s look at the sum of each row. Assume ym is the center of the square. We divide all
other points into groups of 1st square neighbors, 2nd square neighbors, . . ., j-th square
neighbors, denoted by Sj , j = 1, 2, . . . , J ∼ h−1 = k1−δ. See Figure 6(b). Sj contains those
4(2j + 1) − 4 = 8j grid points that are on the 4 sides of the square centered at ym with
each side of length 2jh. Then we have jh ≤ |ynj − ym| ≤

√
2jh,ynj ∈ Sj , and hence

am,nj . (kjh)−α = j−αk−αδ. For a fixed α > 0 and take 0 < δ < 1 arbitrary close to 0, we
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have

(66)

∑nhk
n=1 a

2
mn = 1 +

∑J
j=1

∑
nj∈Sj a

2
m,nj . 1 +

∑J
j=1 j

−2α+1k−2αδ

.


1 + k2(1−δ−α) . k2(1−δ−α), α < 1, α < 1− δ < 1

1 + k−2δ ln k . 1, α = 1, 0 < δ < 1

1 + k−2αδ . 1, α > 1, 0 < δ < 1

Actually for any grid point ym, each j-th square neighbors of ym has at least 8j/4 = 2j
points for j = 1, 2, . . . , J ∼ k1−δ, e.g., if ym is a corner point of the square domain. Hence
the above asymptotic formula is still true. For a fixed α > 0 and any 0 < δ < 1 arbitrary
close to 0, we have

(67)

nεk∑
m=1

λ2
m ≤

nhk∑
m=1

nhk∑
n=1

a2
mn .

 k2(2(1−δ)−α), α < 1

k2(1−δ), α ≥ 1

Combining (67) with (60), we have

(68) N ε
k &


(1− ε2)2k2α, α < 1

(1− ε2)2k2(1−δ), α ≥ 1.
.

Combining (67) with (61), we have

(69) N
ε
k .

 ε−4k2(2(1−δ)−α), α < 1

ε−4k2(1−δ), α ≥ 1

.

m

Y

y
1

y
2

y

Y

y
m

S1

S2

(a) (b)

Figure 6. Green’s functions with sources on a uniform grid.



APPROXIMATE SEPARABILITY OF GREEN’S FUNCTION FOR HIGH FREQUENCY HELMHOLTZ EQUATIONS23

Case 3: s = 3. Y is a unit cube in R3. Put down a uniform grid ym,m = 1, 2, . . . , nhk =

k3(1−δ) in Y with grid size h = kδ−1, 0 < δ < 1 and define matrix A as in (58). Let

λ1 ≥ λ2 ≥ . . . ≥ λnhk
≥ 0 be its eigenvalues, then

∑nhk
m=1 λm = nhk and we have (60),

(61). Similar to 2D case, assume ym is the center of the cube. We divide all other points
into groups of 1st cube neighbors, 2nd cube neighbors, . . ., j-th cube neighbors, denoted by
Cj , j = 1, 2, . . . , J ∼ h−1 = k1−δ. Cj contains those 6(2j+1)2−12(2j+1)+8 = 24j2+2 grid
points ynj that are on the faces of the cube centered at ym with each face a square of length

2jh. Then we have jh ≤ |ynj − ym| ≤
√

3jh,ynj ∈ Cj , and am,nj . (kjh)−α = j−αk−αδ.
For 0 < δ < 1 arbitrary close to 0, one has the row sum estimate

(70)

∑nhk
n=1 a

2
mn = 1 +

∑J
j=1

∑
nj∈Cj a

2
m,nj . 1 +

∑J
j=1(24j2 + 2)j−2αk−2αδ

.


1 + k3(1−δ)−2α . k3(1−δ)−2α, α < 3

2 ,
2
3α < 1− δ < 1

1 + k−3δ ln k . 1, α = 3
2 , 0 < δ < 1

1 + k−2αδ . 1, α > 3
2 , 0 < δ < 1.

Also this is true for any point ym which has at least 1/8 of 24j2 + 2 points in its j-th
cube neighbor Cj for j = 1, 2, . . . , J ∼ k1−δ. Hence for a fixed α > 0 and any 0 < δ < 1
arbitrary close to 0,

(71)

nεk∑
m=1

λ2
m ≤

nhk∑
m=1

nhk∑
n=1

a2
mn .

 k2(3(1−δ)−α), α < 3
2

k3(1−δ), α ≥ 3
2

Combining (71) with (60), we have

(72) N ε
k &


(1− ε2)2k2α, α < 3

2

(1− ε2)2k3(1−δ), α ≥ 3
2

.

Combine (71) with (61), we have

(73) N
ε
k .

 ε−4k2(3(1−δ)−α), α < 3
2

ε−4k3(1−δ), α ≥ 3
2

.

Replace sδ by δ in each of the above cases, we complete the proof. �

Remark 3.1. When d = 3, if either dim(X) = dim(Y ) = 3 or X and Y are separated,
there are 0 < c < c < ∞ independent of k such that c ≤ ‖G(·,y)‖2 ≤ c uniformly
in y ∈ Y . For the same set of Green’s functions G(x,yj) as in the above proof and
A =< G(·,ym), G(·,yn) >, we have

(74) cnhk ≤
nhk∑
m=1

λm ≤ cnhk ⇒
Nε
k∑

m=1

λm ≥ (1− ε2)

nhk∑
m=1

λm ≥ (1− ε2)cnhk .
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Hence inequalities (60) is replaced by the following:

(75)

nhk∑
m=1

λ2
m >

Nε
k∑

m=1

λ2
m ≥ N ε

k

[
(1− ε2)cnhk

N ε
k

]2

=
[(1− ε2)cnhk ]2

N ε
k

,

and (61) is the same. The estimate of
∑nεk

m=1 λ
2
m ≤

∑nhk
m=1

∑nhk
n=1 a

2
mn is amplified by c2

from the previous estimate at most. So the same results are true.

When d = 2, except for a scaling factor k−
1
2 for the Green’s function, everything else is

similar to the case d = 3. By the definition 3.2 of N ε
k, it is independent of a constant scaling

of the whole set of vectors. So the results for N ε
k also holds for A =< G(·,ym), G(·,yn) >.

Remark 3.2. The size of Y can be scaled for the result of Lemma 3.1. If α ≥ s
2 , trace

estimates (62), (67), and (71) gives
∑nhk

m=1 λ
2
m . nhk. It can be seen easily from (60) and

(61) that if Y is scaled to aY , k is scaled to ak in those estimates (56), (57) for N ε
k and

N
ε
k respectively. Otherwise, the only factor that can not be scaled with nhk in the trace

estimates is k−2αδ in (62), (66) and (70). Hence, in addition to scale k to ak, there is an
extra factor of a2αδ for the result of Lemma 3.1.

Remark 3.3. The key estimates in the proof of Lemma 3.1 are (60) (or (75)), (61), and

the one for
∑nhk

m=1 λ
2
m = tr(ATA). Although the estimate of tr(ATA) can be improved by

more careful estimates of each row sum
∑nhk

n=1 a
2
mn by taking into account different decorre-

lation rate according to Theorem 2.1, e.g., dividing those points in each j-th square (cube)
neighbors of ym (see Figure 6) into directional cone sections according to whether the line
connecting ym and its neighbors intersecting X or not, which gives different decorrelation
rate of two Green’s functions or different power α in am,nj . (kjh)−α for points in different
cones, as long as there is a solid angle cone such that lines connecting those neighbors in
that section and ym intersect X, the order of the estimate can not be improved. On the
other hand, whether (60) and (61) are sharp or not is a more complicated issue. The answer

depends on the variation of leading eigenvalues of the matrix A =< Ĝ(·,ym), Ĝ(·,yn) >,
which depends on the geometric setup of X and Y , and the choice of ε.

3.2. Lower Bound and Upper Bound Estimate for Approximate Separability of
Green’s Function. Now we use Lemma 3.1 to prove the following lower bound estimate
for approximate separability (14) of Green’s function for Helmholtz equation (5) in the
high frequency limit.

Theorem 3.1. Let X,Y be two compact manifolds embedded in Rd, d = 2, 3, and d ≥
dim(X) ≥ dim(Y ) = s. Assume that for any two points y1,y2 ∈ Y ,

| < Ĝ(·,y1), Ĝ(·,y2) > | . (k|y1 − y2|)−α as k|y1 − y2| → ∞
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for some α > 0. If there are fl(x) ∈ L2(X), gl(y) ∈ L2(Y ), l = 1, 2, . . . , N ε
k such that

(76)

∥∥∥∥∥∥Ĝ(x,y)−
Nε
k∑

l=1

fl(x)gl(y)

∥∥∥∥∥∥
L2(X×Y )

≤ ε,

then

(77) N ε
k ≥


cεk

2α, α < s
2 ,

cεk
s−δ, α ≥ s

2 ,

for any 0 < δ < 1 and arbitrary close to 0 as k → ∞, where cε ≥ c(1 − (Cε)2)2 for some
positive constants c and C that only depend on X, Y and n(x).

Proof. Without loss of generality, we assume Y is a line of unit length, a unit square or
a unit cube for s = 1, 2, 3 respectively. First, put down a uniform coarse grid in Y with
grid size h = kδ−1, 0 < δ < 1 and is arbitrary close to 0. The grid divides Y into cells

Ym,m = 1, 2, . . . Nh
k = ks(1−δ). Divide each coarse cell Ym further into uniform finer cells

of size h < k−1, Ym,n, n = 1, 2, . . . , N
h
k = (h/h)s. See Figure 7. For a fixed n, Ym,n is in

the same relative location in each coarse cell Ym. The center and volume of each cell Ym,n
is ym,n and hs respectively. Define Ĝh(x,y) = Ĝ(x,ym,n),∀y ∈ Ym,n to be a piecewise

constant function in y. We show that by choosing h < k−1 small enough

(78)

∫
Y
dy

∫
X
|Ĝ(x,y)−Ĝh(x,y)|2dx =

Nh
k∑

m=1

N
h
k∑

n=1

∫
Ym,n

dy

∫
X
|Ĝ(x,y)−Ĝ(x,ym,n)|2dx . ε2

If X,Y are disjoint, assuming n(x) is smooth in the Helmholtz equation (5) and there is no

caustics, we have |∇yĜ(x,y)| . k uniformly in x ∈ X and y ∈ Y . One can pick h < k−1

small enough such that

|Ĝ(x,y)− Ĝ(x,ym,n)| ≤ ε, ∀x ∈ X,y ∈ Ym,n, m = 1, 2, . . . , Nh
k , n = 1, 2, . . . , N

h
k .

and get (78).

m,n

Ω

Ω
Y

mΩ
Y

Y
m,n

y

Figure 7. Two scale decomposition of the source domain.
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If X and Y are not disjoint and dim(X) = dim(Y ) = d = 2 or 3, G(·,y) ∈ L2(X), ∀y ∈
Y , we show that there is still h < k−1 small enough such that

(79)

∫
X
|Ĝ(x,y)− Ĝ(x,ym,n)|2dx . ε2, ∀y ∈ Ym,n,

which implies (78). From (12) and the asymptotic formulas (7), (8), we have

(80)

∫
Bτ (y)

|Ĝ(x,y)|2dx . τ

with the constant independent of k, where Bτ (y) denotes the ball with radius τ centered
at y. Hence there are balls Bτ(ε)(y) and Bτ(ε)(ym,n) with radius τ(ε) ∼ ε2 such that

(81)

∫
X∩Bτ(ε)(y)

|Ĝ(x,y)|2dx ≤ ε2,
∫
X∩Bτ(ε)(ym,n)

|Ĝ(x,ym,n)|2dx ≤ ε2

for a given ε, Denote Xε = X ∩ (Bτ(ε)(y) ∪ Bτ(ε)(ym,n)) and XC
ε = X \Xε. For y ∈ Ym,n

we have∫
X |Ĝ(x,y)− Ĝ(x,ym,n)|2dx

=
∫
XC
ε
|Ĝ(x,y)− Ĝ(x,ym,n)|2dx +

∫
Xε
|Ĝ(x,y)− Ĝ(x,ym,n)|2dx = I + II

Since |∇yĜ(x,y)| . max(kτ−1(ε), τ−2(ε)), ∀x ∈ XC
ε , by choosing h < k−1 small enough

we get I . ε2. From (81) we get II . ε2. Hence we prove (79).

Let the linear subspace SX = span{fp(x)}N
ε
k

p=1 ⊂ L2(X), then∫
Y
‖Ĝ(x,y)− PSX Ĝ(x,y)‖2L2(X)dy ≤ ε

2,

where PSX is the projection onto SX . From (78), we have∫
Y
‖(I − PSX )[Ĝ(x,y)− Ĝh(x,y)]‖2L2(X)dy . O(ε2),

where I is the identity map, from (78) we have

(82)

ε2 &
∫
Y ‖(I − PSX )Ĝh(x,y)]‖2L2(X)dy

=
∑Nh

k
m=1

∑N
h
k

n=1

∫
Ym,n
‖(I − PSX )Ĝ(x,ym,n)‖2L2(X)dy

= hs
∑Nh

k
m=1

∑N
h
k

n=1 ‖Ĝ(x,ym,n)− PSX Ĝ(x,ym,n)‖2L2(X)

= (h/h)sh
s∑Nh

k
m=1

∑N
h
k

n=1 ‖Ĝ(x,ym,n)− PSX Ĝ(x,ym,n)‖2L2(X)

& 1

N
h
k

∑N
h
k

n=1
1

Nh
k

∑Nh
k

m=1 ‖Ĝ(x,ym,n)− PSX Ĝ(x,ym,n)‖2L2(X)
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Assume
(83)
Nh
k∑

m=1

‖Ĝ(x,ym,n)− PSX Ĝ(x,ym,n)‖2L2(X) = min
n

Nh
k∑

m=1

‖Ĝ(x,ym,n)− PSX Ĝ(x,ym,n)‖2L2(X)

Then there is a constant C > 0 such that

(84)
1

Nh
k

Nh
k∑

m=1

‖Ĝ(x,ym,n)− PSX Ĝ(x,ym,n)‖2L2(X) ≤ C
2ε2

Since ym,n ∈ Y,m = 1, 2, . . . Nh
k = ks(1−δ) forms a uniform grid with grid size h = kδ−1, we

can apply Lemma 3.1 to get

dim(SX) ≥


c(1− (Cε)2)2k2α α < s

2

c(1− (Cε)2)2ks−δ α ≥ s
2

for any 0 < δ < 1 and arbitrary close to 0 as k → ∞, where C > 0, c > 0 are some
constants that depend only on X and Y and n(x).

�

Remark 3.4. Theorem 3.1 presents the intrinsic mathematical difficulty for numerical
computation of Helmholtz equation with large wave number k. When n = 3, the same lower
bound estimate for approximate separability holds for unnormalized Green’s function too.
Hence, a discretized system, such as the discretized kernel in boundary integral formulation
or inverse of the matrix corresponding to direct discretization of the PDE and its off-
diagonal sub-matrices corresponding to a mesh that resolves the wavelength, does not have
low rank approximation for large k due to the decorrelation of Green’s functions caused by

fast oscillations. However, when n = 2, for separated X and Y , |G(x,y)| . k−
1
2 ,∀(x,y) ∈

X × Y which approximate separability trivial when k is large enough.

Remark 3.5. Although it seems that the lower bound estimate (77) in Theorem 3.1 shows
a weak dependence of N ε

k on ε as k → ∞, the choice of ε can affect the sharpness of the
lower bound as commented in Remark 3.3.

Here we also give an upper bound estimate for the approximate separability of Green’s
function in the high frequency limit. The intuition is that the Green’s functions with
sources located within a wavelength are correlated. So use the linear subspace spanned by
Green’s functions sampled uniformly in the source domain with a grid size smaller than
wavelength should approximate the whole family of Green’s functions good enough.

Theorem 3.2. Let X,Y be two compact manifolds embedded in Rd, d = 2, 3 and d ≥
dim(X) ≥ dim(Y ) = s. For any ε > 0 and δ > 0, there are fl(x) ∈ L2(X), gl(y) ∈
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L2(Y ), l = 1, 2, . . . , N ε
k ≤ Cks+δ such that

(85)

∥∥∥∥∥∥Ĝ(x,y)−
Nε
k∑

l=1

fl(x)gl(y)

∥∥∥∥∥∥
L2(X×Y )

≤ ε

as k →∞, where C > 0 is some constant that depends on X, Y and n(x).

Proof. Put down a uniform grid in Y , which is assumed to be a line of unit length, a
unit square or a unit cube for s = 1, 2, 3 respectively, with grid size h = k−1−δ/2. Denote
the grid point as ym,m = 1, 2, . . . , Nh

k = ks(1+δ/2). Denote the liner subspace SX =

span{Ĝ(x,ym)}N
h
k

m=1 ⊂ L2(X). We claim

(86) ‖Ĝ(x,y)− PSX Ĝ(x,y)‖L2(X) ≤ |Y |−
1
2 ε

for k large enough, where |Y | denotes the volume of Y .
If X and Y are disjoint, assuming n(x) is smooth in the Helmholtz equation (5) and

there is no caustics, we have |∇yĜ(x,y)| . k, ‖D2
yG(x,y)‖ . k2, where the bound is

uniform in X and Y . Given a non-grid point y ∈ Y , Ĝ(x,y) can be approximated by a
linear interpolation, which is convex combination of Green’s function at its neighboring
grid points. To be precise, suppose y ∈ Y lies in the s dimensional simplex with vertices
ym1 , . . . ,yms+1 . Let r1

y, . . . , r
s+1
y be the barycentric coordinates for y, i.e.,

y =

s+1∑
j=1

rjyymj , 1 ≥ rjy ≥ 0,

s+1∑
j=1

rjy = 1.

Then we have the following linear interpolation

(87) |Ĝ(x,y)−
s+1∑
j=1

rjyĜ(x,ymj )| . ‖D2
yĜ(x,y)‖h2 . k−δ,

and hence (86) is true when k is large enough.

If X and Y are not disjoint and dim(X) = dim(Y ) = d = 2, 3, Ĝ(·,y) ∈ L2(X). For a
given ε, there are balls Bτ(ε)(y) and Bτ(ε)(ymj ) with radius 0 < τ(ε) ∼ ε2 centered at y
and ymj , j = 1, 2, . . . , d+ 1 such that

(88)

∫
Bτ(ε)(y)

|Ĝ(x,y)|2dx ≤ ε2

8|Y |(d+ 2)
,

∫
Bτ(ε)(ymj )

|Ĝ(x,ymj )|2dx ≤
ε2

8|Y |(d+ 2)
.

Also we have |∇yĜ(x,y)| . max(kτ−1(ε), τ−2(ε)), ‖D2
yĜ(x,y)‖ . max(k2τ−1(ε), kτ−2(ε), τ−3(ε))

and hence
(89)

|Ĝ(x,y)−
s+1∑
j=1

rjyĜ(x,ymj )| . ‖D2
yĜ(x,y)‖h2 . max(k2(1−γ), k1−2γτ−2(ε), k−2γτ−3(ε)).
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for any x ∈ X \ Bτ(ε)(y) ∪ (∪d+1
j=1Bτ(ε)(ymj )). By decomposing the integration in (86)

on X into two parts, one on Xε = X ∩ (Bτ(ε)(y) ∪ (∪d+1
j=1Bτ(ε)(ymj ))) and the other on

XC
ε = X \ (Bτ(ε)(y) ∪ (∪d+1

j=1Bτ(ε)(ymj ))), we have

(90)

∫
Xε
|Ĝ(x,y)−

∑d+1
j=1 r

j
yĜ(x,ymj )|2dx

≤ 2
∫
Xε
|Ĝ(x,y)|2 +

∑d+1
j=1 r

j
y|Ĝ(x,ymj )|2dx

≤ 2
∫
Bτ(ε)(y)∪(∪d+1

j=1Bτ(ε)(ymj )) |Ĝ(x,y)|2 +
∑d+1

j=1 r
j
y|Ĝ(x,ymj )|2dx

≤ ε2

2|Y | ,

and from (89)

(91)

∫
XC
ε

|Ĝ(x,y)−
d+1∑
j=1

rjyĜ(x,ymj )|2dx ≤
ε2

2|Y |

when k is large enough. Combining the above two parts we get (86) when k is large enough,
which implies

(92)

√∫
Y
‖Ĝ(x,y)− PSX Ĝ(x,y)‖2L2(X)dy ≤ ε.

�

Remark 3.6. The above upper bound holds for unnormalized Green’s function when d = 3.

If dim(X) = dim(Y ) = d = 2, 3, since the Green’s function belongs to L2(X × Y ),
our approximate separability estimates in L2 norm is valid for general compact domains
X and Y , disjoint or not. However, if X and Y are disjoint, which is the case for most
applications, our results in L2 norm are also true in L∞(X × Y ) norm. Since L∞ norm is
stronger than L2 norm in a compact domain, the lower bound for approximate separability
in Theorem 3.1 immediately extends to L∞ norm. Also, first part of the proof in Theorem
3.2 directly extends to L∞ norm. We summarize these two results below.

Theorem 3.3. Let X,Y be two disjoint compact manifolds embedded in Rd, d = 2, 3, and
d ≥ dim(X) ≥ dim(Y ) = s. Assume that for any two points y1,y2 ∈ Y ,

| < Ĝ(·,y1), Ĝ(·,y2) > | . (k|y1 − y2|)−α as k|y1 − y2| → ∞

for some α > 0. If there are fl(x) ∈ L∞(X), gl(y) ∈ L∞(Y ), l = 1, 2, . . . , N ε
k such that

(93)

∣∣∣∣∣∣Ĝ(x,y)−
Nε
k∑

l=1

fl(x)gl(y)

∣∣∣∣∣∣ ≤ ε, ∀x ∈ X,∀y ∈ Y,
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then

(94) N ε
k ≥


cεk

2α, α < s
2 ,

cεk
d−δ, α ≥ s

2 ,

for any 0 < δ < 1 and arbitrary close to 0 as k → ∞, where cε ≥ c(1 − (Cε)2)2 for some
positive constants c and C that only depend on X, Y and n(x).

Theorem 3.4. Let X,Y be two separated compact manifolds embedded in Rd, d = 2, 3, and
d ≥ dim(X) ≥ dim(Y ) = s. For any ε > 0 and δ > 0, there are fl(x) ∈ L∞(X), gl(y) ∈
L∞(Y ), l = 1, 2, . . . , N ε

k ≤ Ckd+δ such that

(95)

∣∣∣∣∣∣Ĝ(x,y)−
Nε
k∑

l=1

fl(x)gl(y)

∣∣∣∣∣∣ ≤ ε, ∀x ∈ X,∀y ∈ Y,

as k →∞, where C > 0 is some constant that depends on X, Y and n(x).

Remark 3.7. In Theorem 3.2, upper bound estimate for the approximate separability of
Green’s function for the Helmholtz equation in the high frequency limit in L2 norm is
derived based on separable approximation using linear combination (interpolation) of a set
of Green’s functions with sources located on a uniform grid. It is also possible to obtain an
upper bound estimate in the L2 norm for the approximate separability of Green’s function
for the Helmholtz equation in the high frequency limit in homogeneous medium for an
arbitrary bounded domain based on separable approximation using the eigenfunctions of
Laplace operator and Weyl’s asymptotic formula [28] for the eigenvalues.

Suppose G(x,y) is the Green’s function in a bounded domain Ω ⊂ Rd satisfying

(96)

{
∆xG(x,y) + k2G(x,y) = δ(x− y), x,y ∈ Ω,
G(x,y) = 0, x ∈ ∂Ω.

Let um(x), ‖um‖L2(Ω) = 1,m = 1, 2, . . . be the normalized eigenfunctions for the Laplace
operator

(97) ∆um(x) = λum(x), x ∈ Ω, um(x) = 0,x ∈ ∂Ω

with eigenvalues 0 > λ1 ≥ λ2 ≥ . . .. Hence um(x),m = 1, 2, . . . are also the normalized
eigenfunctions for the homogeneous Helmholtz operator with eigenvalues λm + k2,m =
1, 2, . . .. Here we assume the domain Ω is not resonant, i.e., λm + k2 6= 0, ∀m. Since
um(x) forms an orthonormal basis for L2(Ω) and G(x,y) ∈ L2(Ω) for d = 2, 3, one has
the following expansion

(98) G(x,y) =

∞∑
m=1

(λm + k2)−1um(y)um(x).

The Weyl’s asymptotic formula gives

(99) |λm| ∼
4π2m2/d

(Cd|Ω|)2/d
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for large m, where |Ω| is the volume of Ω. Choose a large enough integer M & kd+δ, δ > 0,

then |λm + k2|−1 . |λm|−1 . m−
2
d for m > M . For any ε > 0, we have

(100)

∫
Ω

∫
Ω
|G(x,y)−

M∑
m=1

(λm + k2)−1um(y)um(x)|2dxdy .
∞∑

m=M+1

m−
4
d .M1− 4

d < ε2

when k is large enough for d = 2, 3. Hence one can use eigenfunctions of Laplace operators
to construct a separable approximation for the Green’s function of Helmholtz equation. In
particular for any two subdomains X,Y of Ω, (100) implies

(101)

∥∥∥G(x,y)−
∑M

m=1(λm + k2)−1um(y)um(x)
∥∥∥
L2(X×Y )

≤
∥∥∥G(x,y)−

∑M
m=1(λm + k2)−1um(y)um(x)

∥∥∥
L2(Ω×Ω)

< ε

which shows that N ε
k . k

d+δ for any δ > 0 in the high frequency limit.

Remark 3.8. It can be seen from Theorem 3.1 and 3.2 as well as Remark 3.7 that

if two Green’s functions at different sources decorrelate fast,
∣∣∣< Ĝ(·,y1), Ĝ(·,y2) >

∣∣∣ .
(k|y1 − y2|)−α with α ≥ s

2 , s = dim(Y ) ≤ dim(X), the upper and lower estimate of the
approximate separability of Green’s function for Helmholtz equation is sharp in the high
frequency limit. In this scenario, a set of Green’s functions with sources uniformly dis-
tributed in a domain or a set of leading eigenfunctions for Laplace operator form a good
basis to represent an arbitrary Green’s function or solution. However, the representation
is not much compressible and hence low rank approximation in numerical computation is
not feasible. Moreover, to compute a set of densely distributed Green’s functions or a large
number of eigenfunctions of Laplace operator of order at least O(ks) for a s-dimensional
manifold for a general setup in practice is computationally challenging. In certain setups,
explicitly known special functions/basis can be explored to develop fast algorithms even for
dense matrices that do not have low rank approximation, such as fast Fourier transform
(FFT).

4. Examples

In this section we apply our previous general results to a few setups that are of practical
interests in 3D. Again we assume that X,Y are two compact manifolds embedded in
R3 and dim(X) ≥ dim(Y ) = s. First, in Section 4.1, we discuss several examples for
which the Green’s function for Helmholtz equation is not highly separable in the high
frequency limit. In particular, if the decorrelation of two Green’s functions is fast enough,∣∣∣< Ĝ(·,y1), Ĝ(·,y2) >

∣∣∣ . (k|y1−y2|)−α, α ≥ s
2 , the lower bound and upper bound for the

approximate separability of Green’s function for Helmholtz equations in the high frequency
limit are sharp. As discussed in the proof of Theorem 2.1, Remark 2.3 and Section 2.2, if a
generic ray going through two points, y1,y2 ∈ Y , only intersect X at isolated points, then
α = s

2 and hence both lower bound and upper bound are sharp. For all these examples,
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where X and Y are given and fixed, the lower bound in Theorem 3.1, sharp or not, implies
that there is no low rank approximation in the corresponding discretized system due to the
fast decorrelation of Green’s function of Helmholtz equation in the high frequency limit.
However, there are special k dependent setups for X and Y , which are discussed in Section
4.2, where the Green’s function for Helmholtz equation is highly separable even in the high
frequency limit. High separability in these special setups, which implies availability of low
rank approximation in the corresponding discretized system, can be explored to develop
fast algorithms. In the following study, all constants are positive and only depend on X,Y
and n(x) by assuming ε is small so that the weak dependence of those estimates in Theorem
3.1, 3.3 on it is neglected.

4.1. Examples of not highly separable Green’s function.
1) X and Y are two disjoint compact domains in R3, dim(X) = dim(Y ) = s = 3. For two

points y1,y2 ∈ Y , we can only claim | < Ĝ(·,y1), Ĝ(·,y2) >X | . (k|y1−y2|)−1 in general
from Theorem 2.1 since for any point y ∈ Y there is a cone with y as the vertex and a solid
angle. A segment of the ray (a straight line in homogeneous medium) connecting y and a
point in the cone stays in X which gives a 1D curve of stationary phase. Since α = 1 < s

2
our lower bound and upper bound estimates are not sharp. Theorem 3.1, 3.3 give the lower
bound N ε

k & k
2 while Theorem 3.2, 3.4 give the upper bound N ε

k . k
3+δ for any δ > 0.

2) X and Y are two disjoint compact surfaces in 3D, dim(X) = dim(Y ) = s = 2. This is a
typical scenario for boundary integral methods when X and Y are two pieces of the bound-
ary of scatterers. In general, the ray (straight line in homogeneous medium) going through
two points y1,y2 ∈ Y intersects X at most finite number of times, i.e., there are only

isolated stationary points for the oscillatory surface integral of
∣∣∣< Ĝ(·,y1), Ĝ(·,y2) >X

∣∣∣, so

α = s
2 by standard stationary phase theory (see Remark 2.3). From Theorem 3.1- 3.4 we

have a sharp estimate

k2−δ . N ε
k . k

2+δ, ∀δ > 0,

as k →∞.
Another interesting scenario is when people compute the direct inverse of the discretized

linear system for Helmholtz equation using multi-frontal method in which the full linear
system is reduced to smaller but dense linear systems corresponding to unknowns living
on planar domains such as those depicted in Figure 8. Low rank approximation or further
skeletonization for these smaller but dense linear systems is crucial for a fast numerical
solver. We use our theory to give the approximate separability estimates for the typical
setups in the high frequency limit. Since s = 2, the upper bound is N ε

k . k2+δ for any
δ > 0. Now let’s look at the lower bound. We first look at three typical configurations
in homogeneous medium where rays are (piecewise) straight lines: (a) if X,Y are two dis-
joint coplanar regions as shown in Figure 8(a), the least rate of decorrelation between two

Greens’s function is α = 1
2 , i.e.,

∣∣∣< Ĝ(·,y1), Ĝ(·,y2) >X

∣∣∣ . (k|y1−y2|)−
1
2 by Theorem 2.1

when a segment of the ray going through y1,y2 stay in X. So one has N ε
k & k as k →∞;

(b) if X,Y are two disjoint planar regions that are not coplanar nor parallel to each other,
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e.g. perpendicular to each other as shown in Figure 8(b). The least rate of decorrelation
between two Greens’s function is α = 1 by applying the standard stationary phase result
since any ray going through two points y1,y2 ∈ Y intersect X at most finite times (0 or 1).
So one has N ε

k & k2−δ,∀δ > 0 as k → ∞; (c) if X,Y are two planar regions in parallel as

shown in Figure 8(c), the least rate of decorrelation between two Greens’s function is α = 3
2

(in general since any ray going through two points y1,y2 ∈ Y does not intersect X) or 1
(if part of the boundary ∂X stays on a level set of the phase function |x− y1| − |x− y2|),
see Remark 2.3. So one has N ε

k & k
2−δ,∀δ > 0 as k →∞. If the medium is inhomogeneous,

a ray going through two points y1,y2 is not straight line and intersect a planar region X
only a finite number of times. So α ≥ 1 and we have the sharp low bound estimate
N ε
k & k2−δ, ∀δ > 0 in general for the above three configurations. For a discretization with

a fixed ratio of grid size and wavelength, the sharp lower bound means that the discretized
matrix and its sub matrices are full rank modulo a constant.

X Y

X
Y X Y

(a) (b) (c)

Figure 8. Two planar surfaces in 3D.

3) X ∈ R3 is a compact domain, Y is a compact smooth curve (dim(Y ) = s = 1) or surface
(dim(Y ) = s = 2) and X,Y are disjoint. Given any two different points y1,y2 ∈ Y , we

have
∣∣∣< Ĝ(·,y1), Ĝ(·,y2) >X

∣∣∣ . (k|y1 − y2|)−α for some 1 ≤ α ≤ 2 from Theorem 2.1.

Since α ≥ s
2 , from Theorem 3.1- 3.4 one has the following sharp estimates

ks−δ . N ε
k . k

s+δ, ∀δ > 0,

as k →∞.

4) X is a 2D surface or 1D curve and Y is a 1D curve. One has α = 1 if X is a sur-
face or α = 1

2 if X is a curve using standard stationary phase theory for a general X and
two points y1,y2 ∈ Y . So for both scenarios we have sharp bounds

k1−δ . N ε
k & k

1+δ ∀δ > 0,

as k →∞.

4.2. Highly Separable Cases. Although in this study we have shown that the lower
bound for the number of terms, N ε

k, in the approximate separability (2) of the Green’s
function G(x,y) for Helmholtz equation in the high frequency limit grows with certain
power of k (Theorem 3.1, 3.3) in general, there are special k dependent setups of X and
Y where G(x,y) is highly separable, i.e., N ε

k does not depend on k and depends on ε
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logarithmically. These special setups can be explored to develop fast algorithms in practice
by utilizing low rank approximation.

Let’s assume the Green’s function is of or can be approximated by the form G(x,y) =

A(x,y)eikφ(x,y), where A(x,y) is the amplitude function and φ(x,y) is the phase function.
The key point is that fast decorrelation or almost orthogothonality between Green’s func-
tions with different source locations due to rapid change in the phase, as we have shown
for general domains X and Y , are not present in those special setups. Since the amplitude
function A(x,y) is independent of k, typically one needs to find φ1(x) and φ2(y) such
that k(φ(x,y) − φ1(x) − φ2(y)) is uniformly bounded with respect to x ∈ X,y ∈ Y and
k and has a highly separable approximation, e.g., Taylor expansion in x,y, and hence
eik(φ(x,y)−φ1(x)−φ2(y)) has a high separable approximation due to the fast convergence of
Taylor expansion for eikz for |z| ≤ C <∞. Also it is easy to see that the phase difference
between two Green’s function at different sources y1,y2 can be written as

k(φ(x,y1)−φ(x,y2)) = k(φ2(y1)−φ2(y2))+k[(φ(x,y1)−φ1(x)−φ2(y1))−(φ(x,y2)−φ1(x)−φ2(y2))]

which is a constant phase shift k(φ2(y1)− φ2(y2)) plus a term that is bounded uniformly
with respect to x ∈ X,y ∈ Y and k . Hence no fast oscillatory integral is present to
decorrelate two Green’s functions. For simplicity 3D free space Green’s function (5) are
used for illustration in the following examples.

1) X,Y are two line segments that are collinear as shown in Figure 9(a) in homogeneous
medium

(102) < Ĝ0(·,y1), Ĝ0(·,y2) >=
1

‖G0(·,y1)‖2‖G0(·,y2)‖2
eik(y2−y1)

∫
X

1

|x− y1||x− y2|
dx.

There is no fast oscillatory integral to decorrelate two Green’s functions. Denote the axis
going through these two line segments as r, we have

(103) G0(x,y) =
1

4π

e−ik(rx−ry)

ry − rx
=

1

4π
e−ikrxeikryr−1

y

∞∑
m=0

(
rx
ry

)m.

In this trivial case, φ(x,y) = φ1(x) + φ2(y), where φ1(x) = −rx, φ2(y) = ry. It is easy to

see that the geometric series can be truncated at N ε
k = (log lX

lX+ρ)−1 log(4πρε) to get an a

separable approximation for any ε > 0 independent of k, where lX is the length of X and
ρ is the distance between X and Y . The same argument can be applied to two disjoint
curve segments X and Y that lie on the same ray in heterogeneous medium. In this case

(104) < Ĝ(·,y1), Ĝ(·,y2) >=
1

‖G(·,y1)‖2‖G(·,y2)‖2
eikφ(y1,y2)

∫
X
A(x,y1)A(x,y2)dx,

where φ(y1,y2) is the travel time between y1 and y2 and A(x,y1), A(x,y2) are the corre-
sponding amplitudes in geometric optics ansatz as discussed in Section 2.2.
2) X and Y are two disjoint thin cylinders around a line as shown in Figure 9(b). This 3D
setup is analogous to the 2D setup in [21]. Numerical test will be presented in Section 5.
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Figure 9. Two special setups of X and Y that allow highly separable
approximation of the Green’s function.

Let the longitudinal axis be r and the other two orthogonal coordinates in the plane
perpendicular to r be ξ, η. Let x = (rx, ξx, ηx) ∈ X and y = (ry, ξy, ηy) ∈ Y . Denote

ρ = infx∈X,y∈Y (rx−ry) and τ = supx∈X,y∈Y
√
ξ2 + η2. Assume kτ < 1

2 , µ = τ
ρ <

1
2 . Again

in this case φ1(x) = −rx, φ2(y) = ry as in the previous case. One has

k|φ(x,y)− φ1(x)− φ2(y)| = k(|x− y| − (ry − rx)) < 2kτ = 1

Next, we give an explicit separable construction using asymptotic expansions.
(105)

k|x− y| = k
√

(rx − ry)2 + (ξx − ξy)2 + (ηx − ηy)2

= k(ry − rx) + k
√

(ξx − ξy)2 + (ηx − ηy)2

∞∑
m=1

(−1)m(2m)!

(1− 2m)(m!)24m
((ξx − ξy)2 + (ηx − ηy)2)m−1/2

(ry − rx)2m−1
.

Note that k
√

(ξx − ξy)2 + (ηx − ηy)2 ≤ 2kτ < 1 and (−1)m(2m)!
(1−2m)(m!)24m

< 1
2m . So the second

term in the above expression can be bounded by a geometric series
∑∞

m=1(2τ
ρ )2m−1. So

(106)

< Ĝ0(·,y1), Ĝ0(·,y2) >=
1

‖G0(·,y1)‖2‖G0(·,y2)‖2
eik(ry1−ry2 )

∫
X

eiφ̃(x)

|x− y1||x− y2|
dx,

where φ̃(x) = k[(|x−y1| − (ry1 − rx))− (|x−y2| − (ry2 − rx))] and |φ̃(x)| = O(1), ∀x ∈ X.
Again no fast oscillation due to rapid change of phase is present in the integral. Now we
show explicitly the approximate separation based on the expansion (105).

For any tolerance ε > 0, take q such that (2τ
ρ )2q+1(1 − 2τ

ρ )−1 < ε. So only the first

q = O(| log ε|) terms are needed in the summation in (105). Denote Q(x,y) be the first q
term expansion,

Q(x,y) = k
√

(ξx − ξy)2 + (ηx − ηy)2

q∑
m=1

(−1)m(2m)!

(1− 2m)(m!)24m
((ξx − ξy)2 + (ηx − ηy)2)m−1/2

(ry − rx)2m−1
.

Q(x,y) is bounded independent of k. So

eik|x−y| = eik(ry−rx)ei(Q(x,y)+ε) = eik(ry−rx)eiQ(x,y) +O(ε).
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Since ex can again have a p = O(| log ε|) term polynomial expansion for any tolerance ε for
a bounded x, we have

eiQ(x,y) =

p∑
l=0

[iQ(x,y)]l

l!
+O(ε).

Let’s look at each term in the summation. Since each term in the expansion of [Q(x,y)]l

is like [
k
√

(ξx − ξy)2 + (ηx − ηy)2

]l (√(ξx − ξy)2 + (ηx − ηy)2
)m

(ry − rx)m

where the integer m ranges from l to (2q−1)l and m+l is even. One only needs to keep those

m ≤ 2q terms in the expansion because (2τ
ρ )2q+1 = O(ε) and k

√
(ξx − ξy)2 + (ηx − ηy)2 <

1. So altogether we have O(pq) = O(| log ε|2) terms of the form

(107)
((ξx − ξy)2 + (ηx − ηy)2)m

(ry − rx)l
,

where 0 < l ≤ m . | log ε| are integers. Each term

((ξx − ξy)2 + (ηx − ηy)2)m = [(ξ2
x + η2

x)− 2ξxξy − 2ηxηy + (ξ2
y + η2

y)]
m

can be expanded into (m+3)!
m!3! = O(| log ε|3) separable terms. Further more, since rx > ry ≥

0, O(| log ε|) leading terms are needed in the following expansion to have an ε approxima-
tion,

(108) (ry − rx)−l = r−lx

[
1−

∞∑
m=1

(
ry
rx

)m]l
.

Hence a separable ε-approximation of eik|x−y| requires O(| log ε|6) terms. The last term we
need to make a separable approximation is 1

|x−y| .

1

|x− y|
= (ry − rx)−1

[
1 +

(ξx − ξy)2 + (ηx − ηy)2

(rx − ry)2

]− 1
2

= r−lx

[
1−

∞∑
m=1

(
ry
rx

)m]l [
1 +

∞∑
m=1

(−1)m(2(m+ 1))!

2(2m+ 1)((m+ 1)!)24m
((ξx − ξy)2 + (ηx − ηy)2)m

(ry − rx)2m

]
Both summations in the above the formula can be truncated at O(| log ε|) terms with ε
error. Each term in the summation in the second bracket is similar to the term in (107)
which can be approximated by at most O(| log ε|4) separable terms. So 1

|x−y| can also be

approximated by O(| log ε|6) separable terms. Combine all these terms together we have
N ε
k ≤ O(| log ε|12) for this setup.
3) Here we include two setups of X and Y that has have been proposed and used for

developing fast algorithms.
(a) In [24, 6, 18] fast butterfly algorithms for computing highly oscillatory Fourier integral



APPROXIMATE SEPARABILITY OF GREEN’S FUNCTION FOR HIGH FREQUENCY HELMHOLTZ EQUATIONS37

operators and boundary integrals for Helmholtz equation were developed. The key idea
is a dyadic decomposition of two domains A,B into tree structures TA, TB, from root
to leaf, and a recursive paring of X ∈ TA and Y ∈ TB such that the phase function
or free space Green’s function restricted on X × Y has good separability property or
low rank approximation in discrete setting. The condition for pairing X and Y is that
the product of the radius of X and Y is less than or equal to 1

k . For this setup, the
key observation is that one can construct a simple separable phase function, φ(x0,y) +
φ(x,y0)− φ(x0,y0) that can approximate the original phase function uniformly well, i.e.,
k|φ(x,y) − φ(x0,y) − φ(x,y0) + φ(x0,y0)| is uniformly bounded for all k, x ∈ X,y ∈ Y ,
where x0,y0 are the centers of X,Y respectively. Under an analytic function assumption
for φ(x,y), k(φ(x,y) − φ(x0,y) − φ(x,y0) + φ(x0,y0)) can be approximated by a Taylor
expansion with O(| log ε|) terms (see the proof in [6]).
(b) In [8] fast directional multilevel algorithms for oscillatory kernels were developed based
on directional low rank property of free space Green’s function of Helmholtz equation on
two domains Xr and Yr that satisfies directional parabolic separation condition: Yr is a
ball of radius r centered at a point c and Xr is the domain containing all points which
are at a distance r2 or greater from c and belong to a cone centered at c with spanning
angle 1

r . Here r can be thought in unit of wavelength λ = 2π
k . For this setup, the phase

function |x−y| = k
2π |λx−λy| can be uniformly approximated by x̂ · (x−y) = |x|− x̂ ·y =

|x| − (x̂ − l̂) · y − l̂ · y which can be further approximated by |x| − l̂ · y uniformly, where

x̂ = x
|x| and l̂ is the direction the cone centered at. In another word, let φ(x,y) = |x− y|

and φ1(x) = |x|, φ2(y) = −l̂ · y, then |φ(x,y) − φ1(x) − φ2(y)| is uniformly bounded and
has an O(log |ε|) term separable approximation with any ε > 0 error.

4) Here we present a scaling argument to show a high separable asymptotic regime
for two general disjoint domains, X and Y , as k → ∞. Then we use this asymptotic
argument to show that the condition for the setup of butterfly algorithm is tight. Let
r(X), r(Y ) denote the diameters of X,Y respectively. Denote the distance between X
and Y to be dist(X,Y ). Without loss of generality, let r(Y ) ≤ r(X) and r(X) = O(1).
Actually the size of X is not restricted since it can always be scaled to O(1) by scaling
x to x

r(X) for the Helmholtz equation (5). Assume r(Y ) � dist(X,Y ). From the scaling

argument in Remark 2.2, the rate of decorrelation of two Green’s functions is rescaled

to
∣∣∣< Ĝ(·,y1), Ĝ(·,y2) >

∣∣∣ . ( |y1−y2|2k
dist(X,Y )

)−α
, ∀y1,y2 ∈ Y for some α > 0. So if r(Y ) .√

dist(X,Y )
k , there is no fast decorrelation of two Green’s function. On the other hand, if

r(Y ) &
√

dist(X,Y )
k1−δ

, ∀δ > 0, one can put a grid with a grid size a little larger than

√
dist(X,Y )

k

in Y so that they become more and more decorrelated as k → ∞. At the same time, the
number of grid points in Y becomes larger and larger as k → ∞. Use a similar argument
as in Lemma 3.1 one can show a lower bound estimate for approximate separability which
grows with some power of k. The above discussion can be further scaled with dist(X,Y ).
For example, if dist(X,Y ) = O(k), the size of Y can be O(1).
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In a typical setup for butterfly algorithm [24, 6, 18], there are two domains A,B whose
sizes are of O(1) and dist(A,B) = O(1). For example, A,B may be disjoint boundaries of
scatterers in boundary integral methods. Dyadic decomposition of A,B gives tree struc-
tures TA, TB with L = O(log k) levels, where the roots are A,B and the leaf nodes at
level L are of size O(k−1). Then the interaction between A and B through a highly os-
cillatory kernel function, e.g., the Green’s function for Helmholtz equation or a Fourier
integral operator, is computed based on a recursive pairing of nodes X, A ⊇ X ∈ TA,
and Y , B ⊇ Y ∈ TB, such that the level of X, l(X), and the level of Y , l(Y ), satisfy
l(X) + l(Y ) = L. The key observation is that the interaction between X and Y has a low
rank approximation. It was shown in [6] that the low rank approximation is guaranteed if
r(X)r(Y ) = O(k−1) which is implied by condition l(X) + l(Y ) = L (plus some analyticity
condition on the phase function). It can be easily seen that high separability for the setup
for butterfly algorithms falls into the asymptotic regime discussed above. The requirement
of analyticity of the phase function is equivalent to requiring dist(X,Y ) > c > 0 for some
fixed c and the condition r(X)r(Y ) = O(k−1) implies the smaller domain Y (or X) satisfies

r(Y )(or r(X))≤ O(k−
1
2 ). In particular, this condition is barely satisfied when r(X) ∼ r(Y )

or l(X) = l(Y ). If r(A)r(B) = O(kδ) for any δ > 0 or dist(X,Y )→ 0 as k →∞, then the
condition is violated and low rank approximation is not valid as discussed above.

4.3. Approximate separability with boundary condition. So far we have shown
approximate separability estimates for Green’s function of Helmholtz equation in high
frequency limit either in the whole space. Here we present an example when boundary
and reflection are present. First we study approximate separability of Green’s function
for Helmholtz equation in half space with homogeneous Dirichlet boundary condition as
illustrated in Figure 10(a). The Green’s function for the upper space, denoted by G1(x,y),
can be explicitly constructed from free space Green’s function, denoted by G0(x,y),

G1(x,y) = G0(x,y)−G0(x,y),

where y is the mirror image of y with respect to the boundary. Decorrelation of G1 can
be deduced from that of G0. Given two disjoint compact domains X and Y in the upper
half space and two points y1,y2 ∈ Y , if the line ly2

y1 connecting these two points intersects

with X, or none of the the lines l
y2
y1 , ly2

y1
, l

y2
y1

intersects with X, we have

(109)
|< G1(·,y1), G(·,y2) >|

=|<G0(x,y1),G0(x,y2)>−<G0(x,y1),G0(x,y2)>−<G0(x,y1),G0(x,y2)>+<G0(x,y1),G0(x,y2)>|

. |< G0(·,y1), G0(·,y2) >|

since |y1−y2| ≤ min(|y1−y2|, |y1−y2|, |y1−y2|) and dist(yj , X) < dist(yj , X), j = 1, 2.
Otherwise, decorrelation of G1(x,y1) and G1(x,y2) may be slower than that of G0(x,y1)
and G0(x,y2). In general, for two disjoint compact domains X and Y , there is a cone
with solid angle at each point y ∈ Y with y as the vertex such that a line connecting y
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and any other point in the cone will intersect X. Correlations between Green’s functions
of these points are the leading terms in the estimate of tr(ATA) as discussed in Remark
3.3. Hence the relation (109) implies that the proof and result in Lemma 3.1 and the
lower bound estimates in Theorem 3.1 and Theorem 3.3 for X and Y without boundary
hold for this case too. It can also be easily seen that separable approximation of Green’s
function G1(x,y) for x ∈ X,y ∈ Y can be obtained by combining separable approximation
of G0(x,y) for x ∈ X,y ∈ Y and that of G0(x,y) for x ∈ X,y ∈ Y , where Y is the mirror
image of Y with respect to the boundary. So the upper bound estimates in Theorem 3.2
and Theorem 3.4 hold too here. Although the asymptotic formulas of the lower bound and
upper bound estimate for approximate separability of Green’s function in this case is similar
to those in free space, the number of terms, N ε, needed for a separable approximation for
the Green’s function with a given error tolerance ε > 0 defined in (2) will increase due
to reflection at the boundary in general. It can be argued by the following. The Green’s
function G1(x,y) viewed as a family function in X parametrized by y ∈ Y is composed
of a family of free space Green’s function G0(x,y) with y in a larger domain Y ∪ Y . Or
geometrically, instead of there is one ray connecting any two points x ∈ X and y ∈ Y in
free space, now there are two rays with the presence of a reflection boundary. The phase
function becomes more complicated and needs more terms in a separable approximation.
As the distance from the boundary to X and Y becomes larger and larger, the effect from
the boundary becomes less and less. In general, one can expect that presence of reflection
and scattering can cause the increase of N ε, the number of terms needed for a separable
approximation for the Green’s function defined in (2).

reflection boundary

X Y
y1 y2

y2

Y

X Y

x y

reflection boundary

y

(a) (b)

Figure 10. Half space setups with a reflection boundary.

Here, we give a more explicit study of the boundary effect on a particular setup as
depicted in Figure 10(b), where X and Y are two disjoint collinear line segments parallel to
the boundary. Without the reflection boundary, G0(x,y),x ∈ X,y ∈ Y is highly separable
which is discussed as the first special case in Section 4.2. However, if the distance from the
boundary to X,Y is small compared to the wavelength and the separation distance between
X and Y , the special setup of two thin cylinders in Section 4.2 or study in [21, 9] shows
that G1(x,y),x ∈ X,y ∈ Y is still highly separable. This is the key observation for the
low rank approximation used in the sweeping preconditioner for Helmholtz equation in 2D
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in [9]. However, this highly separable property does not hold if the boundary is not close
enough. Also high separability does not hold in an analogous setup in 3D. As discussed
in case 2) in Section 4.1, even for two general disjoint compact co-planar 2D regions X,Y
without the boundary the number of terms needed for a separable approximation is at least
O(k) as k →∞.

We can extend the above study further to Helmholtz equation in a waveguide, see Figure
11. The Green’s function in the waveguide with a source at y is an infinite sum of homoge-
nous Green’s functions with sources that are mirror images of each other with respect the
top and bottom boundary, i.e.,

(110) G2(x,y) = G0(x,y) +

∞∑
m=1

(−1)mG0(x,y+
m) +

∞∑
m=1

(−1)mG0(x,y−m),

where y+
1 is the mirror image of y with respect to the top boundary, y+

m,m = 2, 3, . . . is the
mirror image of y−m−1 with respect to the top boundary. Similarly, y−1 is the mirror image

of y with respect to the bottom boundary and y−m,m = 2, 3, . . . is the mirror image of y+
m−1

with respect to the bottom boundary. Due to the two reflection boundaries, the Green’s
function G2(x,y),y ∈ Y in the waveguide involves free space Green’s function G0(x,y)
with y belonging an infinite union of Y and its images and their images with respect to
the top and bottom boundary respectively. In another word, there is one direct ray in free
space and infinite many broken rays due to the waveguide setup connecting any two points
x ∈ X and y ∈ Y . Of course the decay factor 1

|x−y| will play a role here too. For the setup

of two collinear line segments X and Y shown in Figure 11(b), highly separability does not
hold even if both boundaries are very close.

 Y

reflection boundary

reflection boundary

X

reflection boundary

X Y

x y

reflection boundary

(a) (b)

Figure 11. Helmholtz equation in a waveguide.

5. Numerical tests

Here we show a few numerical tests related to our analysis in previous sections. In all
our numerical tests free space Green’s functions are used. Our computational grid size h
resolves the wavelength λ = 2π/k, h = λ/15 in 2D and h = λ/13 in 3D.
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Example 1 We test the decorrelation of two Green’s functions,
∣∣∣< Ĝ1(·,y1), Ĝ1(·,y2) >X

∣∣∣,
where X is a compact domain. In this test, we show results for k starting from 50 with an
increment of 5.

Figure 12 shows the decorrelation of two Green’s functions in 2D. Here the domain X
is a disc centered at (0, 0) with radius 0.4. In Figure 12(a) the two points y1,y2 lie on
x-axis. So the line through y1,y2 intersects X and hence there is a line of stationary points
for < Ĝ1(·,y1), Ĝ1(·,y2) >X . In Figure 12(b), the line through y1,y2 is parallel to y-axis

which does not intersect X. Hence there is no stationary point for < Ĝ1(·,y1), Ĝ1(·,y2) >.
As shown in the proof of Theorem 2.1, two Green’s functions in this case decorrelate much
faster than the afore mentioned case.

Also two Green’s functions decorrelate faster when |y1 − y2| becomes larger in general
as shown in Theorem 2.1,. It can be seen that as y1,y2 are further away from X, two
Green’s functions become more correlated due to scaling of the gradient and the Hessian
of the phase function in term of the distance from y1,y2 to X as explained in Remark 2.2.
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(a) (b)

Figure 12. Decorrelation of two Green’s functions in 2D.

Figure 13 shows a test with homogeneous Dirichlet boundary condition. The boundary
is an infinite line that is parallel to x-axis located at y = −d. In Figure 13(a), X is again
a disc as before. One can see that the boundary condition does affect the correlation
between two Green’s functions. However, the asymptotic behavior is similar to the one
without boundary condition as k → ∞. In Figure 13(b), X is a line segment on x-axis
between [−0.5, 0.5], which is co-linear with points y1,y2. With no boundary conditions,
the two Green’s functions are just different by a constant phase and hence fully correlated.
When the boundary is present and is not too close or too far away from the two points
and X, we do see more decorrelations due to the boundary boundary. When the boundary



42 BJÖRN ENGQUIST AND HONGKAI ZHAO

is either very close or the boundary is very far, the two Green’s functions become highly
correlated as explained in Section 4.3.
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Figure 13. Decorrelation of two Green’s functions in 2D with a boundary.

Figure 14 shows corresponding tests in 3D. The behavior in 3D is similar to those in
2D. The domain X is a ball centered at the origin with radius 0.4. Figure 14(a) shows a
test where the two points y1,y2 lie on x-axis, hence the line through y1,y2 intersects X
and two Green’s functions decorrelate relatively slow. Figure 14(b) shows the effect of a
Dirichlet boundary condition.
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Figure 14. Decorrelation of two Green’s functions in 3D.

Example 2 Here we present singular value decomposition (SVD) pattern for matrix
G(xi,yj), where xi,yj are uniformly distributed points in X and Y respectively with a
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grid size that resolves the wavelength. 3D free space Green’s function are used in the test.
In these tests, we show results for k ranging from 10 to 150 with an increment of 5. In the
following figures, solid lines show the number of leading singular values that is larger than
ε vs. the wave number k while dotted lines shows N ε defined by Definition 3.2. In all tests
we use three threshold values ε = 10−2, 10−4, 10−6.

Figure 15(a) is the result for X = {(x, y, z)|x ∈ [−0.5, 0.5], y = 0, z = 0} and Y =
{(x, y, z)|x = 0, y = 0.2, z ∈ [−0.5, 0.5]}. Figure 15(b) is the result for X, a sphere centered
at origin with radius 0.5, and Y = {(x, y, z)|x ∈ [0.6, 1.6], y = 0.6, z = 0}. Linear growth
as predicted by our analysis is clearly seen for both cases.

0 50 100 150
4

6

8

10

12

14

16

=1e 6

=1e 4

=1e 2

wavenumber k

nu
m

be
r o

f l
ea

di
ng

 s
in

gu
la

r v
al

ue
 >

 

0 50 100 150
5

10

15

20

25

30

35

40

45

=1e 2

=1e 4

=1e 6

wavenumber k

nu
m

be
r o

f l
ea

di
ng

 s
in

gu
la

r v
al

ue
 >

 

(a) (b)

Figure 15. Leading singular values vs. wave number for dim(Y ) = 1.

Figure 16 gives an example of two square domains X,Y of length 0.4 for each side with
different relative position corresponding to the three setups as discussed in Section 4.1 case
2) and demonstrated in Figure 8. In Figure 16(a), X,Y are side by side and coplanar
with minimum distance 0.1 between them. In Figure 16(b), X,Y are side by side and
orthogonal to each other with minimum distance 0.1 between them. In Figure 16(a), X,Y
are parallel with distance 0.3 between them. As analyzed in Section 4.1, case (a) has
the slowest rate of decorrelation between two Green’s function and hence also the slowest
growth of the number of leading singular values and N ε

k while case (c) has the fastest rate
of decorrelation between two Green’s function and hence also the fastest growth of the
number of leading singular values and N ε

k among the three cases as k →∞. At least linear
growth is observed in case (a). In both case (b) and (c) a quadratic growth, as predicted
by sharp lower bound and upper bound estimates and analyzed in Section 4.1 case 2, is
observed.

Figure 17(a) shows an example of two spheres of radius 0.2 with a separation distance
of 0.2 between the two spheres. At the maximum wave number k = 150, 20,000 points
are randomly distributed on the surface of each sphere with the number of points being
proportional to wave number for wave numbers in between. Again one sees that the number
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Figure 16. Leading singular values vs. wave number for two squares in 3D.

of leading singular values grows quadratically as analyzed in Section 4.1 case 2). Figure
17(b) shows an example of two thin cylinders as illustrated in Figure 9(b). The radius
of each cylinder is half wavelength and the length of each cylinder is 0.4. The separation
distance between the two cylinders is one wavelength. The SVD pattern agrees with our
high separability result in Section 4.2 nicely.

6. Conclusion

In this work, approximate separability of Green’s functions of Helmholtz equations in
the high frequency limit, which has direct implication for low rank approximation for
the corresponding discretized linear system, is studied in details. By characterizing the
decorrelation rate of two Green’s function due to fast oscillations in various situations and
showing a tight dimension estimate for the approximation of a set of almost orthogonal
vectors, we prove an explicit and sharp asymptotic formula for the lower bound for the
number of terms needed for a separable approximation of Green’s function in the high
frequency limit. It gives a rigorous mathematical argument for the complexity and difficulty
for solving high frequency Helmholtz equation numerically. Application to setups that
are commonly used in practice is presented. Numerical tests show full agreement with
the analysis. Development of efficient numerical algorithms based on this study will be
investigated in the future.
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Figure 17. SVD pattern for two spheres and two thin cylinders.
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